Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( 3x - 1)( x + 2) = ( 3x - 1)(7x - 10)
<=>( 3x - 1)( x + 2) - ( 3x - 1)(7x - 10) = 0
<=> ( 3x - 1)( x + 2 - 7x + 10) = 0
<=>( 3x - 1)( -6x + 12) = 0
\(\Leftrightarrow\orbr{\begin{cases}3x-1=0\\-6x+12=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=2\end{cases}}}\)
Vậy.....
\(\left(3x-1\right)\left(x+2\right)=\left(3x-1\right)\left(7x-10\right)\)
\(3x^2+5x-2=21x^2-37x+10\)
\(3x^2+5x-2-21x^2+37x-10=0\)
\(-18x^2+42x-12=0\)
\(-6\left(3x-1\right)\left(x-2\right)=0\)
\(-6\ne0\)
\(\left(3x-1\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x=1\\x=2\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=2\end{cases}}}\)
a) \(2x^3 + 6x^2 = x^2 +3x\)
\(\Leftrightarrow2x^2\left(x+3\right)=x\left(x+3\right)\)
\(\Leftrightarrow2x^2\left(x+3\right)-x\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(2x^2-x\right)=0\)
\(\Leftrightarrow\left(x+3\right).x\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=0\\x=\dfrac{1}{2}\end{matrix}\right.\)
S = \(\left\{-3;0;\dfrac{1}{2}\right\}\)
b) \((3x-1) (x^2 +2 ) = (3x-1) (7x - 10)\)
\(\Leftrightarrow\left(3x-1\right)\left(x^2+2\right)-\left(3x-1\right)\left(7x-10\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x^2+2-7x+10\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x^2-7x+12\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x-3\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\x-3=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=3\\x=4\end{matrix}\right.\)
S = \(\left\{\dfrac{1}{3};3;4\right\}\)
a)\(2x^3=x^2+2x-1\)
\(\Rightarrow2x^3-x^2-2x+1=0\)
\(\Rightarrow x^2\left(2x-1\right)-\left(2x-1\right)=0\)
\(\Rightarrow\left(x^2-1\right)\left(2x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(x+1\right)\left(2x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=\pm1\\x=\frac{1}{2}\end{cases}}\)
b)\(\left(3x-1\right)\left(x^2+2\right)=\left(3x-1\right)\left(7x-x\right)\)
\(\Rightarrow\left(3x-1\right)\left(x^2+2\right)-6x\left(3x-1\right)=0\)
\(\Rightarrow\left(3x-1\right)\left(x^2+2-6x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x-1=0\\\Delta_{x^2-6x+2=0}=\left(-6\right)^2-4\cdot1\cdot2=28\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x_{2,3}=\frac{6\pm\sqrt{28}}{2}\end{cases}}\)
a) \(\left(4x-10\right)\left(24+5x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}4x-10=0\\24+5x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{10}{4}=\dfrac{5}{2}\\x=-\dfrac{24}{5}\end{matrix}\right.\)
Vậy \(S=\left\{-\dfrac{24}{5};\dfrac{5}{2}\right\}\)
b) \(\left(3.5-7x\right)\left(0.1x+2.3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}3.5-7x=0\\0.1x+2.3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{3.5}{7}=\dfrac{1}{2}\\x=-\dfrac{2.3}{0.1}=-23\end{matrix}\right.\)
Vậy \(S=\left\{-23;\dfrac{1}{2}\right\}\)
a)(2x+1)(3x-2)=(5x-8)(2x+1)
⇔(2x+1)(3x-2)-(5x-8)(2x+1)=0
⇔(2x+1)(3x-2-5x+8)=0
⇔(2x+1)(-2x+6)=0
⇔2x+1=0 hoặc -2x+6=0
1.2x+1=0⇔2x=-1⇔x=-1/2
2.-2x+6=0⇔-2x=-6⇔x=3
phương trình có 2 nghiệm x=-1/2 và x=3
a)\(\left(x^2+1\right)\left(x^2-4x+4\right)=0\Leftrightarrow\orbr{\begin{cases}x^2+1=0\\x^2-4x+4=0\end{cases}\Rightarrow\orbr{\begin{cases}x^2=-1\left(vn\right)\\\left(x-2\right)^2=0\end{cases}\Rightarrow}x=2}\)
b)\(\left(3x-2\right)\left(\frac{2x+6}{7}-\frac{4x-3}{5}\right)=0\\ \Rightarrow\left(3x-2\right)\left(\frac{10x+30-28x+21}{35}\right)=0\)
\(\Rightarrow\left(3x-2\right)\left(\frac{-18x+51}{35}\right)=0\Rightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=\frac{17}{6}\end{cases}}\)
c)\(\left(3,3-11x\right)\left(\frac{21x+6+10-30x}{15}\right)=0\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{10}\\x=\frac{16}{9}\end{cases}}\)
\(9x^2-1=\left(3x+1\right)\left(2x-3\right)\)
\(\Leftrightarrow\left(3x+1\right)\left(3x-1\right)=\left(3x+1\right)\left(2x-3\right)\)
\(\Leftrightarrow\left(3x+1\right)\left(3x-1\right)-\left(3x+1\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(3x-1-2x+3\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x+1=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{3}\\x=-2\end{cases}}\)
\(2\left(9x^2+6x+1\right)=\left(3x+1\right)\left(x-2\right)\)
\(\Leftrightarrow2\left(3x+1\right)^2=\left(3x+1\right)\left(x-2\right)\)
\(\Leftrightarrow2\left(3x+1\right)^2-\left(3x+1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(6x+2-x+2\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(5x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x+1=0\\5x+4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{3}\\x=\frac{-4}{5}\end{cases}}\)
Bạn bạn nhân phân phối (3x-1)(x-2) và (3x-1)(7x-10)
Sau đó chuyển vế sao cho về phương trình bậc 2
Sau đó giải pt bậc hai là ra
Ta có : (3x -1 ) . ( x + 2 ) = ( 3x-1 ) .( 7x - 10)
<=>3.x2 + 6x -x -2 = 21x2 -30x - 7x +10
<=> 3x2 + 5x -2 = 21x2 -37x + 10
<=> 3x2 +5x - 3 - 21x2 +37x -10 = 0
<=> -18x2 + 42x -12 = 0
<=> 3x2 -7x +2 = 0
<=> 3x2 -x -6x + 2 = 0
<=> x. ( 3x -1 ) -2.(3x -1 ) = 0
<=> (3x -1 ) . ( x - 2 ) = 0
<=> \(\orbr{\begin{cases}3x-1=0\\x-2=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=\frac{1}{3}\\x=2\end{cases}}\)
Tập nghiệm của phương trình là : { \(\frac{1}{3}\); 2}