\(\left(x+1\right)^4+\left(x+3\right)^4=82\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2017

Bài này có hai cách giải:
*Cách 1:
Đặt t = x + 3
=> x + 2 = t - 1; x + 4 = t + 1.
ta có pt: (t - 1)^4 + (t + 1)^4 = 82
<=>[(t -1)²]² + [(t + 1)²]² = 82
<=> (t² - 2t + 1)² + (t² + 2t + 1)² = 82
<=> (t²+1)² - 4t(t²+1) + 4t² + (t²+1)² + 4t(t²+1) + 4t² = 82
<=> (t² + 1)² + 4t² = 41
<=> t^4 + 6t² + 1 = 41
<=> (t²)² + 6t² - 40 = 0
<=> t² = -10 (loại) hoặc t² = 4
<=> t = 2 hoặc t = -2
với t = -2 => x = -5
với t = 2 => x = -1
vậy pt có hai nghiệm là : x = -1 hoặc x = -5
*Tổng quát:
(x+a)^4 + (x+b)^4 = c
đặt: t = x + (a+b)/2, sau khi chuyển qua ẩn phụ rồi khai triển chắc chắn sẽ ra pt trùng phương.
**Cách 2/ chú ý hai hằng đẳng thức:
a² + b² = (a - b)² + 2ab. và
a² + b² = (a + b)² - 2ab.
pt: (x + 2)^4 + (x + 4)^4 = 82
Đặt: t = (x + 2)(x + 4). ta có:
*(x+2)² + (x+4)² = [(x+2)-(x+4)]² + 2(x+2)(x+4) =
= (-2)² + 2t = 4 + 2t
*(x + 2)^4 + (x + 4)^4 = [(x + 2)²]² + [(x + 4)²]² =
= [(x+2)² + (x+4)²]² - 2(x+2)².(x+4)² =
= [4 + 2t]² - 2t²
= 16 + 16t + 4t² - 2t²
thay vào pt đã cho ta có:
16 + 16t + 2t² = 82
<=> t² + 8t - 33 = 0
<=> t = -11 hoặc t = 3
+Với t = -11:
(x + 2)(x + 4) = -11
<=> x² + 6x +19 = 0 => vn
+Với t = 3:
(x + 2)(x + 4) = 3
<=> x² + 6x + 5 = 0
<=> x = -1 hoặc x = -5

21 tháng 12 2017

=_=

sao ko rep

9 tháng 3 2020

Những bài như thế này thì em chỉ cần nhớ hai điều:

+)Thứ nhất: \(\left(a+b\right)^4=a^4+4a^3b+6a^2b^2+4ab^3+a^4\)

+) Thứ hai : \(\left(-\frac{1}{2}+\frac{3}{2}\right):2=\frac{1}{2}\)

Giải:

Đặt : x = \(t-\frac{1}{2}\)

Ta có pt: \(\left(t-1\right)^4+\left(t+1\right)^4=82\)

<=> \(\left(t^4-4t^3+6t^2-4t+1\right)+\left(t^4+4t^3+6t^2+4t+1\right)=82\)

<=> \(2t^4+12t^2+2=82\)

<=> \(t^4+6t^2-40=0\)

<=> \(t^4+2.t^2.3+9=49\)

<=> \(\left(t^2+3\right)^2=7^2\)

<=> \(\orbr{\begin{cases}t^2+3=7\\t^2+3=-7\left(loai\right)\end{cases}}\)

<=> \(t^2=4\)

<=> \(t=\pm2\)

Với t = 2 ta có: \(x=2-\frac{1}{2}=\frac{3}{2}\)

Với t = -2 ta có: \(x=-2-\frac{1}{2}=-\frac{5}{2}\)

Vậy: 

9 tháng 3 2020

#Cô chi oi hình như phải đặt 

\(x=t+\frac{1}{2}\)mới ra được như này \(\left(t-1\right)\left(t+1\right)\) chứ cô 

20 tháng 1 2017

Đặt \(x+2=t\)

\(\Rightarrow\left(x+1\right)^4+\left(x+3\right)^4=82\)

\(\Leftrightarrow\left(t-1\right)^4+\left(t+1\right)^4=82\)

\(\Leftrightarrow\left[\left(t-1\right)^2\right]^2+\left[\left(t+1\right)^2\right]^2=82\)

\(\Leftrightarrow\left(t^2-2t+1\right)^2+\left(t+2t+1\right)^2=82\)

\(\Leftrightarrow\left(t^2+1\right)^2-4t\left(t^2+1\right)+4t^2+\left(t^2+1\right)^2+4t\left(t^2+1\right)+4t^2=82\)

\(\Leftrightarrow\left(t^2+1\right)^2+4t^2=41\)

\(\Leftrightarrow t^4+6t^2+1=41\)

\(\Leftrightarrow t^4+6t^2-40t=0\)

\(\Leftrightarrow\left[\begin{matrix}t^2=-10\left(lo\text{ại}\right)\\t^2=4\Rightarrow\left[\begin{matrix}t=2\\t=-2\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[\begin{matrix}x=0\\x=-4\end{matrix}\right.\)

22 tháng 1 2017

x=0 hoat 4 nha bn

chuc bn hoc tot

happy new year

10 tháng 2 2019

a) (x+3)4+(x+5)4=16

<=>(x+3)4+(x+5)4=04+24

TH1: \(\left\{{}\begin{matrix}x+3=0\\x+5=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\x=-3\end{matrix}\right.\Leftrightarrow x=-3\)

TH2:\(\left\{{}\begin{matrix}x+3=2\\x+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\x=-5\end{matrix}\right.\)(loại)

b)(x-2)4+(x-3)4=1=04+14

TH1: \(\left\{{}\begin{matrix}x-2=0\\x-3=1\end{matrix}\right.\)loại

TH2: \(\left\{{}\begin{matrix}x-2=1\\x-3=0\end{matrix}\right.\)=>x=3.

c)(x+1)4+(x-3)4=82=34+(-1)4

làm tương tự => x=2.

d) làm tương tự câu b

18 tháng 5 2017

giải đc sao pn dễ mk

19 tháng 5 2017

chẳng ai giải, thôi mình giải vậy!

a) Đặt \(y=x^2+4x+8\),phương trình có dạng:

\(t^2+3x\cdot t+2x^2=0\)

\(\Leftrightarrow t^2+xt+2xt+2x^2=0\)

\(\Leftrightarrow t\left(t+x\right)+2x\left(t+x\right)=0\)

\(\Leftrightarrow\left(2x+t\right)\left(t+x\right)=0\)

\(\Leftrightarrow\left(2x+x^2+4x+8\right)\left(x^2+4x+8+x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-4\end{cases}}\)vậy tập nghiệm của phương trình là:S={-2;-4}

b) nhân 2 vế của phương trình với 12 ta được:

\(\left(6x+7\right)^2\left(6x+8\right)\left(6x+6\right)=72\)

Đặt y=6x+7, ta được:\(y^2\left(y+1\right)\left(y-1\right)=72\)

giải tiếp ra ta sẽ được S={-2/3;-5/3}

c) \(\left(x-2\right)^4+\left(x-6\right)^4=82\)

S={3;5}

d)s={1}

e) S={1;-2;-1/2}

f) phương trình vô nghiệm

18 tháng 1 2018

Ta có :

\(\left(x-1\right)^4+\left(5-x\right)^4=1^4+3^4\)

\(\Rightarrow\hept{\begin{cases}x-1=2\\5-x=3\end{cases}}\)hoặc\(\Rightarrow\hept{\begin{cases}x-1=3\\5-x=1\end{cases}}\)

\(\Rightarrow x=2\)hoặc\(\Rightarrow x=4\)

Vậy, \(\orbr{\begin{cases}x=4\\x=2\end{cases}}\)

18 tháng 1 2018

\(\left(x-1\right)^4+\left(5-x\right)^4=82\)

\(\Leftrightarrow\left(x-1\right)^4+\left(x-5\right)^4=82\)

Đặt \(x-3=y\Rightarrow x=y+3\)

Thay \(x=y+3\)vào phương trình. Ta có:

\(\left(y+2\right)^4+\left(y-2\right)^4=82\)

\(\Leftrightarrow y^4+8y^3+24y^2+32y+16+y^4-8y^3+24y^2-32y+16=82\)

\(\Leftrightarrow2y^4+48y^2+32=82\)

\(\Leftrightarrow2y^4+48y^2+32-82=0\)

\(\Leftrightarrow2y^4+48y^2-50=0\)

\(\Leftrightarrow2\left(y^2-1\right)\left(y^2+25\right)=0\)

\(\Leftrightarrow2\left(y-1\right)\left(y+1\right)\left(y^2+25\right)=0\)

\(\orbr{\begin{cases}\orbr{\begin{cases}y-1=0\\y+1=0\end{cases}}\\y^2+25=0\left(y^2+25\ge25>0\right)\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=1\\y=-1\end{cases}}\)\(\Rightarrow y=1\)hoặc \(y=-1\)

Nếu \(y=1\Rightarrow x=4\)

Nếu\(y=-1\Rightarrow x=2\)

Vậy x=4 hoặc x=2

23 tháng 4 2015

x=3

hoặc

x=5

17 tháng 2 2017

Hồ Nguyện -bạn giải ra luôn đc ko ?