Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải các phương trình và hệ phương trình:
a) x2 - \(2\sqrt{5}\)x + 5 = 0
Ta có: x2 - \(2\sqrt{5}\)x + 5 = 0 <=> ( x = \(\sqrt{5}\) )2 = 0 <=> x - \(\sqrt{5}\) = 0 <=> x = \(\sqrt{5}\)
Vậy phương trình đã cho có tập nghiệm S = ( \(\sqrt{5}\) )
c) \(\begin{cases}2x+5y=-1\\3x-2y=8\end{cases}\) <=> \(\begin{cases}6x+15y=-3\\6x-4y=16\end{cases}\) <=> \(\begin{cases}19y=-19\\3x-2y=8\end{cases}\) <=> \(\begin{cases}y=-1\\3x-2.\left(-1\right)=8\end{cases}\) <=> \(\begin{cases}y=-1\\x=2\end{cases}\)
Vậy hệ phương trình có 1 nghiệm duy nhất (x ; y) = (2 ; -1)
a) Cả hai phương trình đều có chung \(\sqrt{x+3}\)
pt đầu suy ra \(\sqrt{x+3}=2\sqrt{y-1}\)
pt sau suy ra \(\sqrt{x+3}=4-\sqrt{y+1}\)
Vậy \(2\sqrt{y-1}=4-\sqrt{y+1}\), đk y > 1
\(4\left(y-1\right)=16-8\sqrt{y+1}+y+1\)
\(8\sqrt{y+1}+3y-21=0\)
Đặt \(\sqrt{y+1}=t\)
=> y = t2 - 1
=> 8t + 3(t2 -1) -21 =0
3t2 + 8t - 24 = 0
=> t = ...
=> y = t2 - 1
=> \(\sqrt{x+3}=2\sqrt{y-1}\)
=> x =...
b) Trừ hai pt cho nhau ta có:
x2 - y2 = 3(y - x)
(x - y) (x + y + 3) = 0
=> x = y hoặc x + y + 3 = 0
Xét hai trường hợp, rút x theo y rồi thay trở lại một trong hai pt ban đầu tìm ra nghiệm
ĐK:x\(\ge\)0
Đặt t=x2+3x(t\(\ge\) 0)ta được:
\(\sqrt{t+12}=t\Leftrightarrow t^2=t+12\)
<=>t2-t-12=0
\(\Delta=49\Rightarrow\sqrt{\Delta}=7\)
\(\Delta>0,\text{phương trình có 2 nghiệm phân biệt}\)
\(t_1=4\left(thỏa\right);t_2=-3\left(loại\right)\)
t=4=>x2+3x=4
<=>x2+3x-4=0
\(\Delta=25\Rightarrow\sqrt{\Delta}=5;\Delta>0,pt\text{ có 2 nghiệm phân biệt:}\)
\(x_1=1\left(thỏa\right);x_2=-4\left(loại\right)\)
Vậy S={1}
\(\text{ĐKXĐ: }-3x+6\ge0\)
\(\Leftrightarrow-3x\ge-6\)
\(\Leftrightarrow x\le2\)
\(x^2-4x+4=\sqrt{-3x+6}\)
\(\Leftrightarrow\left(x-2\right)^2=\sqrt{-3.\left(x-2\right)}\)
\(\Leftrightarrow\left(x-2\right)^4=-3.\left(x-2\right)\)
\(\Leftrightarrow\left(x-2\right)^3=-3\)
\(\Leftrightarrow\left(x-2\right)^3=\left(\sqrt[3]{-3}\right)^3\)
\(\Leftrightarrow x-2=\sqrt[3]{-3}\)
\(\Leftrightarrow x=\sqrt[3]{-3}+2\)\(\left(\text{thỏa mãn}\right)\)
\(\text{Vậy }x=\sqrt[3]{-3}+2\)