\(\frac{7x-3}{x-1}\)=
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2020

\(a.\frac{7x-3}{x-1}=\frac{2}{3}\\\Leftrightarrow \frac{3\left(7x-3\right)}{3\left(x-1\right)}= \frac{2\left(x-1\right)}{3\left(x-1\right)}\\ \Leftrightarrow3\left(7x-3\right)=2\left(x-1\right)\\\Leftrightarrow 3\left(7x-3\right)-2\left(x-1\right)=0\\ \Leftrightarrow21x-9-2x+2=0\\ \Leftrightarrow19x-7=0\\ \Leftrightarrow19x=7\\ \Leftrightarrow x=\frac{7}{19}\)

\(b.\frac{2\left(3-7x\right)}{1+x}=\frac{1}{2}\\ \Leftrightarrow\frac{4\left(3-7x\right)}{2\left(1+x\right)}=\frac{1\left(1+x\right)}{2\left(1+x\right)}\\\Leftrightarrow 4\left(3-7x\right)=1\left(1+x\right)\\ \Leftrightarrow4\left(3-7x\right)-1\left(1+x\right)=0\\ \Leftrightarrow12-28x-1-x=0\\ \Leftrightarrow11-29x=0\\ \Leftrightarrow-29x=-11\\ \Leftrightarrow x=\frac{-11}{-29}=\frac{11}{29}\)

\(c.\frac{5x-1}{3x+2}=\frac{5x-7}{3x-1}\\ \Leftrightarrow\frac{\left(5x-1\right)\left(3x-1\right)}{\left(3x+2\right)\left(3x-1\right)}=\frac{\left(5x-7\right)\left(3x+2\right)}{\left(3x+2\right)\left(3x-1\right)}\\ \Leftrightarrow\left(5x-1\right)\left(3x-1\right)=\left(5x-7\right)\left(3x+2\right)\\ \Leftrightarrow\left(5x-1\right)\left(3x-1\right)-\left(5x-7\right)\left(3x+2\right)=0\\ \Leftrightarrow15x^2-5x-3x+1-15x^2-10x+21x+14=0\\ \Leftrightarrow3x+15=0\\\Leftrightarrow 3x=-15\\\Leftrightarrow x=-5\)

\(d.\frac{4x+7}{x-1}=\frac{12x+5}{3x+4}\\\Leftrightarrow \frac{\left(4x+7\right)\left(3x+4\right)}{\left(x-1\right)\left(3x+4\right)}=\frac{\left(12x+5\right)\left(x-1\right)}{\left(3x+4\right)\left(x-1\right)}\\\Leftrightarrow \left(4x+7\right)\left(3x+4\right)=\left(12x+5\right)\left(x-1\right)\\\Leftrightarrow \left(4x+7\right)\left(3x+4\right)-\left(12x+5\right)\left(x-1\right)=0\\ \Leftrightarrow12x^2+16x+21x+28-12x^2-12x+5x-5=0\\ \Leftrightarrow30x+23=0\\ \Leftrightarrow30x=-23\\ \Leftrightarrow x=\frac{-23}{30}\)

\(e.\frac{1}{x-2}+3=\frac{3-x}{x-2}\\ \Leftrightarrow\frac{1}{x-2}+\frac{3\left(x-2\right)}{x-2}=\frac{3-x}{x-2}\\ \Leftrightarrow1+3\left(x-2\right)=3-x\\\Leftrightarrow 1+3x-6=3-x\\\Leftrightarrow 1+3x-6-3+x=0\\ \Leftrightarrow4x-8=0\\ \Leftrightarrow4x=8\\ \Leftrightarrow x=2\)

12 tháng 3 2020

\(f.\frac{8-x}{x-7}-8=\frac{1}{x-7}\\ \Leftrightarrow\frac{8-x}{x-7}-\frac{8\left(x-7\right)}{x-7}=\frac{1}{x-7}\\ \Leftrightarrow8-x-8\left(x-7\right)=1\\ \Leftrightarrow8-x-8\left(x-7\right)-1=0\\\Leftrightarrow 8-x-8x+56-1=0\\\Leftrightarrow 63-9x=0\\\Leftrightarrow -9x=-63\\ \Leftrightarrow x=\frac{-63}{-9}=7\)

\(g.\frac{x+5}{x-5}-\frac{x-5}{x+5}=\frac{20}{x^2-25}\\ \Leftrightarrow\frac{x+5}{x-5}-\frac{x-5}{x+5}=\frac{20}{\left(x-5\right)\left(x+5\right)}\\\Leftrightarrow \frac{\left(x+5\right)\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}-\frac{\left(x-5\right)\left(x-5\right)}{\left(x-5\right)\left(x+5\right)}=\frac{20}{\left(x-5\right)\left(x+5\right)}\\ \Leftrightarrow\left(x+5\right)\left(x+5\right)-\left(x-5\right)\left(x-5\right)=20\\\Leftrightarrow \left(x+5\right)\left(x+5\right)-\left(x-5\right)\left(x-5\right)-20=0\\ \Leftrightarrow x^2+5x+5x+25-x^2+5x+5x-25-20=0\\ \Leftrightarrow20x-20=0\\ \Leftrightarrow20x=20\\ \Leftrightarrow x=1\)

\(j.\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\\\Leftrightarrow \frac{x\left(x+1\right)}{2\left(x+1\right)\left(x-3\right)}+\frac{x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}=\frac{2.2x}{2\left(x+1\right)\left(x-3\right)}\\ \Leftrightarrow x\left(x+1\right)+x\left(x-3\right)=4x\\\Leftrightarrow x\left(x+1\right)+x\left(x-3\right)-4x=0\\\Leftrightarrow x^2+x+x^2-3x-4x=0\\ \Leftrightarrow2x^2-6x=0\\ \Leftrightarrow2x\left(x-3\right)=0\\\Leftrightarrow\left[{}\begin{matrix}2x=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right. \)

Câu 3: Giải các phương trình sau bằng cách đưa về dạng ax+b=0 1. a, \(\frac{5x-2}{3}=\frac{5-3x}{2}\); b, \(\frac{10x+3}{12}=1+\frac{6+8x}{9}\) c, \(2\left(x+\frac{3}{5}\right)=5-\left(\frac{13}{5}+x\right)\); d, \(\frac{7}{8}x-5\left(x-9\right)=\frac{20x+1,5}{6}\) e, \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\); f, 4 (0,5-1,5x)=\(\frac{5x-6}{3}\) g, \(\frac{3x+2}{2}-\frac{3x+1}{6}=\frac{5}{3}+2x\); h,...
Đọc tiếp

Câu 3: Giải các phương trình sau bằng cách đưa về dạng ax+b=0

1. a, \(\frac{5x-2}{3}=\frac{5-3x}{2}\); b, \(\frac{10x+3}{12}=1+\frac{6+8x}{9}\)

c, \(2\left(x+\frac{3}{5}\right)=5-\left(\frac{13}{5}+x\right)\); d, \(\frac{7}{8}x-5\left(x-9\right)=\frac{20x+1,5}{6}\)

e, \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\); f, 4 (0,5-1,5x)=\(\frac{5x-6}{3}\)

g, \(\frac{3x+2}{2}-\frac{3x+1}{6}=\frac{5}{3}+2x\); h, \(\frac{x+4}{5}.x+4=\frac{x}{3}-\frac{x-2}{2}\)

i, \(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\); k, \(\frac{5x+2}{6}-\frac{8x-1}{3}=\frac{4x+2}{5}-5\)

m, \(\frac{2x-1}{5}-\frac{x-2}{3}=\frac{x+7}{15}\); n, \(\frac{1}{4}\left(x+3\right)=3-\frac{1}{2}\left(x+1\right).\frac{1}{3}\left(x+2\right)\)

p, \(\frac{x}{3}-\frac{2x+1}{6}=\frac{x}{6}-x\); q, \(\frac{2+x}{5}-0,5x=\frac{1-2x}{4}+0,25\)

r, \(\frac{3x-11}{11}-\frac{x}{3}=\frac{3x-5}{7}-\frac{5x-3}{9}\); s, \(\frac{9x-0,7}{4}-\frac{5x-1,5}{7}=\frac{7x-1,1}{6}-\frac{5\left(0,4-2x\right)}{6}\)

t, \(\frac{2x-8}{6}.\frac{3x+1}{4}=\frac{9x-2}{8}+\frac{3x-1}{12}\); u, \(\frac{x+5}{4}-\frac{2x-3}{3}=\frac{6x-1}{3}+\frac{2x-1}{12}\)

v, \(\frac{5x-1}{10}+\frac{2x+3}{6}=\frac{x-8}{15}-\frac{x}{30}\); w, \(\frac{2x-\frac{4-3x}{5}}{15}=\frac{7x\frac{x-3}{2}}{5}-x+1\)

17

Đây là những bài cơ bản mà bạn!

29 tháng 3 2020

bạn ấy muốn thách xem bạn nào đủ kiên nhẫn đánh hết chỗ này

Bài 1:

a) Ta có: \(2,3x-2\left(0,7+2x\right)=3,6-1,7x\)

\(\Leftrightarrow2,3x-1,4-4x-3,6+1,7x=0\)

\(\Leftrightarrow-5=0\)(vl)

Vậy: \(x\in\varnothing\)

b) Ta có: \(\frac{4}{3}x-\frac{5}{6}=\frac{1}{2}\)

\(\Leftrightarrow\frac{4}{3}x=\frac{1}{2}+\frac{5}{6}=\frac{8}{6}=\frac{4}{3}\)

hay x=1

Vậy: x=1

c) Ta có: \(\frac{x}{10}-\left(\frac{x}{30}+\frac{2x}{45}\right)=\frac{4}{5}\)

\(\Leftrightarrow\frac{9x}{90}-\frac{3x}{90}-\frac{4x}{90}-\frac{72}{90}=0\)

\(\Leftrightarrow2x-72=0\)

\(\Leftrightarrow2\left(x-36\right)=0\)

mà 2>0

nên x-36=0

hay x=36

Vậy: x=36

d) Ta có: \(\frac{10x+3}{8}=\frac{7-8x}{12}\)

\(\Leftrightarrow12\left(10x+3\right)=8\left(7-8x\right)\)

\(\Leftrightarrow120x+36=56-64x\)

\(\Leftrightarrow120x+36-56+64x=0\)

\(\Leftrightarrow184x-20=0\)

\(\Leftrightarrow184x=20\)

hay \(x=\frac{5}{46}\)

Vậy: \(x=\frac{5}{46}\)

e) Ta có: \(\frac{10x-5}{18}+\frac{x+3}{12}=\frac{7x+3}{6}-\frac{12-x}{9}\)

\(\Leftrightarrow\frac{2\left(10x-5\right)}{36}+\frac{3\left(x+3\right)}{36}-\frac{6\left(7x+3\right)}{36}+\frac{4\left(12-x\right)}{36}=0\)

\(\Leftrightarrow2\left(10x-5\right)+3\left(x+3\right)-6\left(7x+3\right)+4\left(12-x\right)=0\)

\(\Leftrightarrow20x-10+3x+9-42x-18+48-4x=0\)

\(\Leftrightarrow-23x+29=0\)

\(\Leftrightarrow-23x=-29\)

hay \(x=\frac{29}{23}\)

Vậy: \(x=\frac{29}{23}\)

f) Ta có: \(\frac{x+4}{5}-x-5=\frac{x+3}{2}-\frac{x-2}{2}\)

\(\Leftrightarrow\frac{2\left(x+4\right)}{10}-\frac{10x}{10}-\frac{50}{10}=\frac{25}{10}\)

\(\Leftrightarrow2x+8-10x-50-25=0\)

\(\Leftrightarrow-8x-67=0\)

\(\Leftrightarrow-8x=67\)

hay \(x=\frac{-67}{8}\)

Vậy: \(x=\frac{-67}{8}\)

g) Ta có: \(\frac{2-x}{4}=\frac{2\left(x+1\right)}{5}-\frac{3\left(2x-5\right)}{10}\)

\(\Leftrightarrow5\left(2-x\right)-8\left(x+1\right)+6\left(2x-5\right)=0\)

\(\Leftrightarrow10-5x-8x-8+12x-30=0\)

\(\Leftrightarrow-x-28=0\)

\(\Leftrightarrow-x=28\)

hay x=-28

Vậy: x=-28

h) Ta có: \(\frac{x+2}{3}+\frac{3\left(2x-1\right)}{4}-\frac{5x-3}{6}=x+\frac{5}{12}\)

\(\Leftrightarrow\frac{4\left(x+2\right)}{12}+\frac{9\left(2x-1\right)}{12}-\frac{2\left(5x-3\right)}{12}-\frac{12x}{12}-\frac{5}{12}=0\)

\(\Leftrightarrow4x+8+18x-9-10x+6-12x-5=0\)

\(\Leftrightarrow0x=0\)

Vậy: \(x\in R\)

Bài 2:

a) Ta có: \(5\left(x-1\right)\left(2x-1\right)=3\left(x+8\right)\left(x-1\right)\)

\(\Leftrightarrow5\left(x-1\right)\left(2x-1\right)-3\left(x-1\right)\left(x+8\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[5\left(2x-1\right)-3\left(x+8\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(10x-5-3x-24\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(7x-29\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\7x-29=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\7x=29\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{29}{7}\end{matrix}\right.\)

Vậy: Tập nghiệm \(S=\left\{1;\frac{29}{7}\right\}\)

b) Ta có: \(\left(3x-2\right)\left(x+6\right)\left(x^2+5\right)=0\)(1)

Ta có: \(x^2\ge0\forall x\)

\(\Rightarrow x^2+5\ge5\ne0\forall x\)(2)

Từ (1) và (2) suy ra:

\(\left[{}\begin{matrix}3x-2=0\\x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=2\\x=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{2}{3}\\x=-6\end{matrix}\right.\)

Vậy: Tập nghiệm \(S=\left\{\frac{2}{3};-6\right\}\)

c) Ta có: \(\left(3x-2\right)\left(9x^2+6x+4\right)-\left(3x-1\right)\left(9x^2-3x+1\right)=x-4\)

\(\Leftrightarrow27x^3-8-\left(27x^3-1\right)-x+4=0\)

\(\Leftrightarrow27x^3-8-27x^3+1-x+4=0\)

\(\Leftrightarrow-x-3=0\)

\(\Leftrightarrow-x=3\)

hay x=-3

Vậy: Tập nghiệm S={-3}

d) Ta có: \(x\left(x-1\right)-\left(x-3\right)\left(x+4\right)=5x\)

\(\Leftrightarrow x^2-x-\left(x^2+x-12\right)-5x=0\)

\(\Leftrightarrow x^2-x-x^2-x+12-5x=0\)

\(\Leftrightarrow12-7x=0\)

\(\Leftrightarrow7x=12\)

hay \(x=\frac{12}{7}\)

Vậy: Tập nghiệm \(S=\left\{\frac{12}{7}\right\}\)

e) Ta có: (2x+1)(2x-1)=4x(x-7)-3x

\(\Leftrightarrow4x^2-1-4x^2+28x+3x=0\)

\(\Leftrightarrow31x-1=0\)

\(\Leftrightarrow31x=1\)

hay \(x=\frac{1}{31}\)

Vậy: Tập nghiệm \(S=\left\{\frac{1}{31}\right\}\)

4 tháng 2 2020

a/ \(7x-5=13-5x\)

\(\Leftrightarrow7x+5x=13+5\)

\(\Leftrightarrow12x=18\)

\(\Leftrightarrow x=\frac{3}{2}\)

b/\(5\left(2x-3\right)-4\left(5x-7\right)=19-2\left(x+11\right)\)

\(\Leftrightarrow10x-15-20x+28=19-2x-22\)

\(\Leftrightarrow10x-20x+2x=19-22-28+15\)

\(\Leftrightarrow-8x=-16\)

\(\Leftrightarrow x=2\)

c/ \(\frac{2x-1}{3}-\frac{5x+2}{7}=x+13\)

\(\Leftrightarrow\frac{7\left(2x-1\right)-3\left(5x+2\right)-21\left(x+13\right)}{21}=0\)

\(\Leftrightarrow14x-7-15x-6-21x-273=0\)

\(\Leftrightarrow-22x-286=0\)

\(\Leftrightarrow x=-13\)

e/ \(\frac{2}{x+1}-\frac{1}{x-2}=\frac{3x-11}{\left(x+1\right)\left(x+2\right)}\)

\(\Leftrightarrow\frac{2}{x+1}-\frac{1}{x-2}-\frac{3x-11}{\left(x+1\right)\left(x+2\right)}=0\)

\(\Leftrightarrow\frac{2\left(x-2\right)\left(x+2\right)-\left(x+1\right)\left(x+2\right)-\left(3x-11\right)\left(x-2\right)}{\left(x+1\right)\left(x-2\right)\left(x+2\right)}=0\)

\(\Leftrightarrow\frac{2\left(x^2-4\right)-\left(x^2+3x+2\right)-\left(3x^2-17x+22\right)}{\left(x+1\right)\left(x-2\right)\left(x+2\right)}=0\)

\(\Leftrightarrow2x^2-8-x^2-3x-2-3x^2+17x-22=0\)

\(\Leftrightarrow-2x^2+14x-32=0\)

\(\Leftrightarrow x^2-7x+16=0\)

\(\Leftrightarrow x=\frac{-\left(-7\right)\pm\sqrt{\left(-7\right)^2-4.1.16}}{2}\)

\(\Leftrightarrow x=\frac{7\pm\sqrt{-15}}{2}\left(ktm\right)\)

\(\Leftrightarrow x\in\varnothing\)

4 tháng 2 2020

Bài 1:

a) \(7x-5=13-5x\)

\(\Leftrightarrow7x+5x=13+5\)

\(\Leftrightarrow12x=18\)

\(\Leftrightarrow x=18:12\)

\(\Leftrightarrow x=\frac{3}{2}.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{\frac{3}{2}\right\}.\)

b) \(5.\left(2x-3\right)-4.\left(5x-7\right)=19-2.\left(x+11\right)\)

\(\Leftrightarrow10x-15-\left(20x-28\right)=19-\left(2x+22\right)\)

\(\Leftrightarrow10x-15-20x+28=19-2x-22\)

\(\Leftrightarrow13-10x=-3-2x\)

\(\Leftrightarrow13+3=-2x+10x\)

\(\Leftrightarrow16=8x\)

\(\Leftrightarrow x=16:8\)

\(\Leftrightarrow x=2.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{2\right\}.\)

c) \(\frac{2x-1}{3}-\frac{5x+2}{7}=x+13\)

\(\Leftrightarrow\frac{7.\left(2x-1\right)}{7.3}-\frac{3.\left(5x+2\right)}{3.7}=\frac{21.\left(x+13\right)}{21}\)

\(\Leftrightarrow\frac{14x-7}{21}-\frac{15x+6}{21}=\frac{21x+273}{21}\)

\(\Leftrightarrow14x-7-\left(15x+6\right)=21x+273\)

\(\Leftrightarrow14x-7-15x-6=21x+273\)

\(\Leftrightarrow-x-13=21x+273\)

\(\Leftrightarrow-x-21x=273+13\)

\(\Leftrightarrow-22x=286\)

\(\Leftrightarrow x=286:\left(-22\right)\)

\(\Leftrightarrow x=-13.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{-13\right\}.\)

Chúc bạn học tốt!

26 tháng 3 2020

a)

\(\frac{x}{3}-\frac{5x}{6}-\frac{15x}{12}=\frac{x}{4}-5\)

\(\Leftrightarrow\frac{4x-10x-15x}{12}=\frac{3x-60}{12}\)

\(\Leftrightarrow\frac{-10x-11}{12}=\frac{3x-60}{12}\)

\(\Leftrightarrow\frac{-10x-11-3x+60}{12}=0\)

\(\Leftrightarrow\frac{49-13x}{12}=0\)

\(\Rightarrow49-13x=0\)

\(\Rightarrow x=\frac{-49}{13}\)

26 tháng 3 2020

b)

\(\frac{8x-3}{4}-\frac{3x-2}{2}=\frac{2x-1}{2}+\frac{x+3}{4}\)

\(\Leftrightarrow\frac{8x-3-6x+4}{4}=\frac{4x-2+x+3}{4}\)

\(\Leftrightarrow\frac{2x+1}{4}=\frac{5x+1}{4}\)

\(\Leftrightarrow\frac{2x+1-5x-1}{4}=0\)

\(\Leftrightarrow\frac{-3x}{4}=0\)

\(\Rightarrow-3x=0\)

\(\Rightarrow x=0\)

Giải các phương trình sau a) \(\frac{7x-3}{x-1}=\frac{2}{3}\) b) \(\frac{2\left(3-7x\right)}{1+x}=\frac{1}{2}\) c) \(\frac{1}{x-2}+3=\frac{3-x}{x-2}\) d) \(\frac{8-x}{x-7}-8=\frac{1}{x-7}\) e) \(\frac{x+5}{x-5}-\frac{x-5}{x+5}=\frac{20}{x^2-25}\) f)\(\frac{1}{x-1}+\frac{2}{x+1}=\frac{x}{x^2-1}\) g) \(\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\) h)\(5+\frac{76}{x^2-16}=\frac{2x-1}{x+4}-\frac{3x-1}{4-x}\) i)...
Đọc tiếp

Giải các phương trình sau

a) \(\frac{7x-3}{x-1}=\frac{2}{3}\)

b) \(\frac{2\left(3-7x\right)}{1+x}=\frac{1}{2}\)

c) \(\frac{1}{x-2}+3=\frac{3-x}{x-2}\)

d) \(\frac{8-x}{x-7}-8=\frac{1}{x-7}\)

e) \(\frac{x+5}{x-5}-\frac{x-5}{x+5}=\frac{20}{x^2-25}\)

f)\(\frac{1}{x-1}+\frac{2}{x+1}=\frac{x}{x^2-1}\)

g) \(\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\)

h)\(5+\frac{76}{x^2-16}=\frac{2x-1}{x+4}-\frac{3x-1}{4-x}\)

i) \(\frac{90}{x}-\frac{36}{x-6}=2\)

k) \(\frac{1}{x}+\frac{1}{x=10}=\frac{1}{12}\)

l) \(\frac{x+3}{x-3}-\frac{1}{x}=\frac{3}{x\left(x-3\right)}\)

m) \(\frac{3}{x+2}-\frac{2}{x-2}+\frac{8}{x^2-4}=0\)

n) \(\frac{3}{x+2}-\frac{2}{x-3}=\frac{8}{\left(x-3\right)\left(x+2\right)}\)

o)\(\frac{x}{2x+6}-\frac{x}{2x+2}=\frac{3x+2}{\left(x+1\right)\left(x+3\right)}\)

p) \(\frac{x}{x+1}-\frac{2x-3}{1-x}=\frac{3x^2+5}{x^2-1}\)

q) \(\frac{5}{x+7}+\frac{8}{2x+14}=\frac{3}{2}\)

r) \(\frac{x-1}{x}=\frac{1}{x+1}=\frac{2x-1}{x^2+x}\)

0
18 tháng 4 2017

\(1.\frac{7x-3}{x-1}=\frac{2}{3}\)   ( \(x\ne1\))

\(\Leftrightarrow\frac{3\left(7x-1\right)}{3\left(x-1\right)}=\frac{2\left(x-1\right)}{3\left(x-1\right)}\)

\(\Rightarrow3\left(7x-3\right)=2\left(x-1\right)\)

\(\Leftrightarrow21x-9=2x-2\)

\(\Leftrightarrow19x=7\)

\(\Leftrightarrow x=\frac{7}{19}\)

\(2.\frac{5x-1}{3x+2}=\frac{5x-7}{3x-1}\)

\(\Leftrightarrow\frac{\left(5x-1\right)\left(3x-1\right)}{\left(3x+2\right)\left(3x-1\right)}=\frac{\left(5x-7\right)\left(3x+2\right)}{\left(3x-1\right)\left(3x+2\right)}\)

\(\Rightarrow\left(5x-1\right)\left(3x-1\right)=\left(5x-7\right)\left(3x+2\right)\)

\(\Leftrightarrow15x^2-5x-3x+1=15x^2+10x-21x-14\)

\(\Leftrightarrow15x^2-8x+1=15x^2-11x-14\)

\(\Leftrightarrow\left(15x^2-15x^2\right)+\left(-8x+11x\right)=-14-1\)

\(\Leftrightarrow3x=-15\)

\(\Leftrightarrow x=-5\)

\(3.\frac{1-x}{x+1}+3=\frac{2x+3}{3x-1}\)

\(\Leftrightarrow\frac{\left(1-x\right)\left(3x-1\right)}{\left(x+1\right)\left(3x-1\right)}+\frac{3\left(x+1\right)\left(3x-1\right)}{\left(x+1\right)\left(3x-1\right)}=\frac{\left(2x+3\right)\left(x+1\right)}{\left(3x-1\right)\left(0+1\right)}\)

\(\Rightarrow\left(1-x\right)\left(3x-1\right)+3\left(x+1\right)\left(3x-1\right)=\left(2x+3\right)\left(x+1\right)\)

\(\Leftrightarrow3x-1-3x^2+x+3\left(3x^2-x+3x-1\right)=2x^2+2x+3x+3\)

\(\Leftrightarrow3x-1-3x^2+x+9x^2-3x+9x-3=2x^2+2x+3x+3\)

\(\Leftrightarrow6x^2+10x-4=2x^2+5x+3\)

\(\Leftrightarrow\left(6x^2-2x^2\right)+\left(10x-5x\right)=7\)

\(\Leftrightarrow4x^2+5x-7=0\)

\(\Leftrightarrow\left(2x\right)^2+4x.\frac{5}{4}+\frac{16}{25}+\frac{191}{25}=0\)

\(\Leftrightarrow\left(2x+\frac{5}{4}\right)^2-\frac{191}{25}=0\)

\(\left(2x+\frac{5}{4}\right)^2>0\)

\(\Rightarrow\left(2x+\frac{5}{4}\right)^2+\frac{191}{25}>0\)

=> PT vô nghiệm 

\(4.\frac{1-6x}{x-2}+\frac{9x+4}{x+2}=\frac{x\left(3x-2\right)+1}{x^2-4}\)

\(\Leftrightarrow\frac{\left(1-6x\right)\left(x+2\right)}{x^2-4}+\frac{\left(9x+4\right)\left(x-2\right)}{x^2-4}=\frac{2\left(3x-2\right)+1}{x^2-4}\)

\(\Rightarrow\left(1-6x\right)\left(x+2\right)+\left(9x+4\right)\left(x-2\right)=3\left(3x-2\right)+1\)

\(\Leftrightarrow x+2-6x^2-12x+9x^2-18x+4x-8=3x^2-2x+1\)

\(\Leftrightarrow3x^2-25x-6=3x^2-2x+1\)

\(\Leftrightarrow\left(3x^2-3x^2\right)+\left(-25x+2x\right)+\left(-6-1\right)=0\)

\(\Leftrightarrow-23x-7=0\)

\(\Leftrightarrow-23x=7\)

\(\Leftrightarrow x=\frac{-7}{23}\)

\(5.\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x^2-4}\)

\(\Leftrightarrow\frac{\left(3x+2\right)^2}{9x^2-4}-\frac{6\left(3x-2\right)}{9x^2-4}=\frac{9x^2}{9x^2-4}\)

\(\Rightarrow\left(3x+2\right)^2-6\left(3x-2\right)=9x^2\)

\(\Leftrightarrow9x^2+12x+4-18x+12=9x^2\)

\(\Leftrightarrow\left(9x^2-9x^2\right)+\left(12x-18x\right)+\left(4+12\right)=0\)

\(\Leftrightarrow-6x+16=0\)

\(\Leftrightarrow-6x=-16\)

\(\Leftrightarrow x=\frac{16}{6}\)

\(6.1+\frac{1}{x+2}=\frac{12}{8-x^3}\)

\(\Leftrightarrow\frac{\left(x+2\right)\left(8-x^3\right)}{\left(x+2\right)\left(8-x^3\right)}+\frac{1\left(8-x^3\right)}{\left(x+2\right)\left(8-x^3\right)}=\frac{12\left(x+2\right)}{\left(x+2\right)\left(8-x^3\right)}\)

\(\Rightarrow\left(x+2\right)\left(8-x^3\right)+1\left(8-x^3\right)=12\left(x+2\right)\)

\(\Leftrightarrow8x+x^4+16+2x^3+8-x^3=12x+24\)

\(\Leftrightarrow x^4+\left(2x^3-x^3\right)+\left(8x-12x\right)+\left(16-24\right)=0\)

\(\Leftrightarrow x^4+x^3-4x-8=0\)

\(\Leftrightarrow\left(x^4-4x\right)+\left(x^3-8\right)=0\)

Đến đấy mk tắc r xl bạn nhé 

14 tháng 2 2020

Bài 2: \(a,\frac{7x-1}{2x^2+6x}=\frac{7x-1}{2x\left(x+3\right)}=\frac{\left(7x-1\right)\left(x-3\right)}{2x\left(x+3\right)\left(x-3\right)}\) 

 \(\frac{5-3x}{x^2-9}=\frac{5-3x}{\left(x-3\right)\left(x+3\right)}=\frac{\left(5-3x\right)2x}{2x\left(x-3\right)\left(x+3\right)}\)

\(b,\frac{x+1}{x-x^2}=\frac{x+1}{x\left(1-x\right)}=-\frac{x+1}{x\left(x+1\right)}=-\frac{2\left(x-1\right)\left(x+1\right)}{2x\left(x-1\right)^2}\) 

 \(\frac{x+2}{2-4x+2x^2}=\frac{x+2}{2\left(x-1\right)^2}=\frac{2x\left(x+2\right)}{2x\left(x-1\right)^2}\)

\(c,\frac{4x^2-3x+5}{x^3-1}=\frac{4x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}\) 

\(\frac{2x}{x^2+x+1}=\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(\frac{6}{x-1}=\frac{6\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(d,\frac{7}{5x}=\frac{7.2\left(2y-x\right)\left(2y+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)

\(\frac{4}{x-2y}=-\frac{4}{2y-x}=-\frac{4.2.5x\left(2x+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)

\(\frac{x-y}{8y^2-2x^2}=\frac{x-y}{2\left(4y^2-x^2\right)}=\frac{x-y}{2\left(2y-x\right)\left(2y+x\right)}=\frac{5x\left(x-y\right)}{2.5x.\left(2y-x\right)\left(2y+x\right)}\)