Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(9x^2+3y^2+6xy-6x+2y-35=0\)
\(\Leftrightarrow\left(9x^2+6xy+y^2\right)-2\left(3x+y\right)+1+2y^2+4y+2=38\)
\(\Leftrightarrow\left(3x+y-1\right)^2+2\left(y+1\right)^2=38\)(*)
\(\Rightarrow\left(3x+y-1\right)^2=38-2\left(y+1\right)^2\le38\)
\(\Rightarrow-\sqrt{38}\le3x+y-1\le\sqrt{38}\)
Từ (*) suy ra 3x + y - 1 chẵn mà 3x + y - 1 nguyên nên \(3x+y-1\in\left\{\pm6;\pm4;\pm2;0\right\}\)
* Nếu \(3x+y-1=\pm6\)thì \(2\left(y+1\right)^2=2\Rightarrow y+1=\pm1\Rightarrow\orbr{\begin{cases}y=-2\\y=0\end{cases}}\)
Th1: \(3x+y-1=6\)
+) \(y=-2\Rightarrow x=3\)
+) \(y=0\Rightarrow x=\frac{7}{3}\left(L\right)\)
Th2: \(3x+y-1=-6\)
+) \(y=-2\Rightarrow x=-1\)
+) \(y=0\Rightarrow x=\frac{-5}{3}\left(L\right)\)
* Nếu \(3x+y-1=\pm4\)thì \(2\left(y+1\right)^2=22\left(L\right)\)
* Nếu \(3x+y-1=\pm2\)thì \(2\left(y+1\right)^2=34\left(L\right)\)
* Nếu 3x + y - 1 = 0 thì \(2\left(y+1\right)^2=38\left(L\right)\)
Vậy phương trình có 2 cặp nghiệm nguyên \(\left(x,y\right)\in\left\{\left(3;-2\right);\left(-1;-2\right)\right\}\)
\(\left(2x^2-3x+1\right)\left(2x^2+5x+1\right)=9x^2\)
\(\Leftrightarrow4x^4+4x^3+2x+1=20x^2\)
\(\Leftrightarrow4x^4+4x^3-20x^2+2x+1=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x-1\right)\left(x\left(2x+5\right)+1\right)=9x^2\)
\(\Leftrightarrow4x^4+4x^3-11x^2+2x+1=9x^2\)
\(\Leftrightarrow x=1-\frac{1}{\sqrt{2}}\)
\(\Leftrightarrow x=1+\frac{1}{\sqrt{2}}\)
\(\Leftrightarrow x=-\frac{3}{7}-\frac{\sqrt{7}}{2}\)
\(\Rightarrow x=\frac{\sqrt{7}}{2}=-\frac{3}{2}\)
\(\left(2x^2-3x+1\right)\left(2x^2+5x+1\right)=9x^2\)
\(\Leftrightarrow4x^4+4x^3+2x+1=20x^2\)
\(\Leftrightarrow4x^4+4x^3+2x+1=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x-1\right)\left(2\left(2x+5\right)+1\right)=9x^2\)
Em kiểm tra lại đề bài nhé!
nếu đúng thì đề là \(\left(x^2-x+1\right)^4-10x^2\left(x^2-x+1\right)+9x^4=0\).
\(x^6+6x^4-36x^3+6x^2+1=0\)
\(\Leftrightarrow\left(x^2-3x+1\right)\left(x^4+3x^3+14x^2+3x+1\right)=0\)
Dễ thấy \(x^4+3x^3+14x^2+3x+1>0\)
\(\Rightarrow x^2-3x+1=0\)
\(\Leftrightarrow x=\dfrac{3\pm\sqrt{5}}{2}\)