\(\left\{{}\begin{matrix}x+y+z=1\\x^4+y^4+z^4=xyz\end{matrix}\right.\)

P/s...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2022

Ta có: \(\dfrac{x+y+z}{4}\ge\sqrt[4]{xyz}\)

Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{3}.1=\dfrac{1}{3}\)

BĐT Cauchy mở rộng nhé, đừng nghĩ anh làm Hoá không làm Toán mà ngu Toán nhé :), đây là BĐT Cauchy mở rộng, ở sách nâng cao có CM nhưng anh vứt đâu rồi

Với \(n\in N\text{*}\), ta luôn có BĐT:

\(\dfrac{a_1+a_2+a_3+...+a_{n-1}+a_n}{n}\ge\sqrt[n]{a_1a_2a_3...a_{n-1}a_n}\)

Dấu "=" xảy ra khi: \(a_1=a_2=a_3=...=a_{n-1}=a_n\)

hơ hơ e bt lèm mà e hỏi cho zuii thoi:v

21 tháng 2 2018

a) \(x^4-30x^2+31x-30=0\)

\(\Leftrightarrow\left(x^4+x\right)+\left(-30x^2+30x-30\right)=0\)

\(\Leftrightarrow x\left(x+1\right)\left(x^2-x+1\right)-30\left(x^2-x+1\right)=0\)

\(\Leftrightarrow\left(x^2+x-30\right)\left(x^2-x+1\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+6\right)\left(x^2-x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=5\\x=-6\end{matrix}\right.\)

21 tháng 2 2018

b) \(\left\{{}\begin{matrix}x+y+z=2\left(1\right)\\2xy-z^2=4 \left(2\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+z^2+2xy+2yz+2xz=4\\2xy-z^2=4\end{matrix}\right.\)

\(\Rightarrow x^2+y^2+z^2+2xy+2yz+2xz=2xy-z^2\)

\(\Leftrightarrow x^2+y^2+2z^2+2yz+2xz=0\)

\(\Leftrightarrow\left(x+z\right)^2+\left(y+z\right)^2=0\)

\(\Rightarrow x=y=-z\) thay vào (1) ta được : \(-z-z+z=2\Rightarrow z=-2\)

\(\Rightarrow x=y=2\)

Vậy \(x=y=2;z=-2\)

18 tháng 1 2020

b)Đặt $S=x+y,P=xy$ thì được:

\(\left\{ \begin{align} & S+P=2+3\sqrt{2} \\ & {{S}^{2}}-2P=6 \\ \end{align} \right.\Rightarrow {{S}^{2}}+2S+1=11+6\sqrt{2}={{\left( 3+\sqrt{2} \right)}^{2}}\)

\(\begin{array}{l} \Rightarrow \left\{ \begin{array}{l} S = 2 + \sqrt 2 \\ P = 2\sqrt 2 \end{array} \right. \Rightarrow \left( {x;y} \right) \in \left\{ {\left( {2;\sqrt 2 } \right),\left( {\sqrt 2 ;2} \right)} \right\}\\ \left\{ \begin{array}{l} S = - 4 - \sqrt 2 \\ P = 6 + 4\sqrt 2 \end{array} \right.\left( {VN} \right) \end{array} \)

18 tháng 1 2020

\( c)\left\{ \begin{array}{l} 2{x^2} + xy + 3{y^2} - 2y - 4 = 0\\ 3{x^2} + 5{y^2} + 4x - 12 = 0 \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} 2\left( {2{x^2} + xy + 3{y^2} - 2y - 4} \right) - \left( {3{x^2} + 5{y^2} + 4x - 12} \right) = 0\\ 3{x^2} + 5{y^2} + 4x - 12 = 0 \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} {x^2} + 2xy + {y^2} - 4x - 4y + 4 = 0\\ 3{x^2} + 5{y^2} + 4x - 12 = 0 \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} {\left( {x + y - 2} \right)^2} = 0\\ 3{x^2} + 5{y^2} + 4x - 12 = 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x + y - 2 = 0\\ 3{x^2} + 5{y^2} + 4x - 12 = 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x = 1\\ y = 1 \end{array} \right. \)

5 tháng 5 2017

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(A=\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}\)

\(\ge\dfrac{\left(1+1+1\right)^2}{x+y+z+3}=\dfrac{3^2}{3+3}=\dfrac{9}{6}=\dfrac{3}{2}\)

Đẳng thức xảy ra khi \(x=y=z=1\)

27 tháng 9 2017

\(\left(x+1\right)\left(y+1\right)=8\\ \Rightarrow xy+x+y+1=8\\ \Rightarrow xy+x+y=7\)

\(x\left(x+1\right)+y\left(y+1\right)+xy=17\\ \Rightarrow x^2+y^2+x+y+xy=17\\ \Rightarrow x^2+y^2=10\)