\(\int^{\frac{x+3}{x-1}-\frac{3}{y+1}=2}_{\frac{4}{x-1}+\frac{2}{y-1}=6}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2015

\(\int^{1+\frac{4}{x-1}-\frac{3}{y-1}=2}_{\frac{4}{x-1}+\frac{2}{y-1}=6}\Leftrightarrow\int^{\frac{1}{y-1}=1}_{\frac{1}{x-1}=1}\Leftrightarrow x=y=2\)

( đặt ẩn phụ cho dẽ làm nhá)

Bạn viết sai dấu y+1 = y-1 ( theo bạn nhẩm 2;2)

2 tháng 1 2016

a) x=3

   y=\(\frac{3}{2}\)

b) x=0,4082482905

   y=-0,7071067812

Trình bày em không biết vì em mới học lớp 7. kết quả đó là của máy tính fx-570ES PLUS ra

2 tháng 1 2016

1/2x-1/3y=1

5x-8y=3

Ta sẽ biến đổi để đưa hệ về các hệ số của cùng 1 ẩn .ta nhan hệ 1 với 5 va hệ 2 voi 1/2.ta có hệ mới

5/2x-1/3y=1

5/2x-8y=3

=> dùng phương pháp thế rút x theo y rồi ra

x:=3;

y:=3/2;

b)

xxta có hệ

5\(\sqrt{3}\)x+y=2\(\sqrt{2}\)

\(\sqrt{6}\)x-\(\sqrt{2}\)y=2;

=>tiếp tục dùng phương pháp thế rút y theo x như phần a

ta có:x=0,4082482950

         y=-0,7071067812

 

7 tháng 3 2016

Bài 2 giải như sau (sau khi tác giả đã sửa): Điều kiện \(x,y>0.\)

Từ hệ ta suy ra \(1+\frac{3}{x+3y}=\frac{2}{\sqrt{x}},1-\frac{3}{x+3y}=\frac{4\sqrt{2}}{\sqrt{7y}}.\)   Cộng và trừ hai phương trình, chia cả hai vế cho 2, ta sẽ được 2 phương trình  \(1=\frac{1}{\sqrt{x}}+\frac{2\sqrt{2}}{\sqrt{7y}},\frac{3}{x+3y}=\frac{1}{\sqrt{x}}-\frac{2\sqrt{2}}{\sqrt{7y}}.\) Nhân hai phương trình với nhau, vế theo vế, ta được 

\(\frac{3}{x+3y}=\frac{1}{x}-\frac{8}{7y}\to21xy=\left(x+3y\right)\left(7y-8x\right)\to21y^2-38xy-8x^2=0\to x=\frac{y}{2},x=-\frac{21}{4}y.\)

Đến đây ta được y=2x (trường hợp kia loại). Từ đó thế vào ta được \(1+\frac{3}{7x}=\frac{2}{\sqrt{x}}\to7x-14\sqrt{x}+3=0\to\sqrt{x}=\frac{7\pm2\sqrt{7}}{2}\to...\)
 

7 tháng 3 2016

bài nhìn kinh khủng thế :3

6 tháng 4 2020

\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x}{3}+\frac{y}{3}=\frac{7}{3}\\\frac{11}{12}x-\frac{y}{6}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x}{6}+\frac{y}{6}=\frac{7}{6}\left(1\right)\\\frac{11x}{12}-\frac{y}{6}=1\left(2\right)\end{matrix}\right.\)

Lấy (1) cộng (2) ta được

\(\frac{13}{12}x=\frac{13}{6}\Rightarrow x=2\Rightarrow y=5\)

Vậy.............

6 tháng 4 2020

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=7\\8x-2y+3x=12\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}13x=26\\y=7-x\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x+2y=14\\11x-2y=12\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=5\end{matrix}\right.\)

Vậy ....

<=> \(\hept{\begin{cases}\frac{2}{x}+\frac{4}{y}=\frac{2}{3}\\\frac{2}{x}-\frac{3}{y}=\frac{1}{4}\end{cases}}\)

<=> \(\hept{\begin{cases}\frac{7}{y}=\frac{5}{12}\\\frac{1}{x}+\frac{2}{y}=\frac{1}{3}\end{cases}}\)

<=> \(\hept{\begin{cases}x=\frac{14}{3}\\y=\frac{84}{5}\end{cases}}\)

11 tháng 10 2020

b) đk: \(\hept{\begin{cases}x\ne0\\x\ne1\end{cases}}\)

pt (1) \(\Leftrightarrow\left(x^2-2x\right)\left(x^2-2x+4\right)=0\Leftrightarrow x\left(x-2\right)\left(x^2-2x+4\right)=0\Leftrightarrow x=0\left(L\right),x=2\left(T\right)\)\(,x^2-2x+4=0\left(3\right)\)

pt(3) VÔ NGHIỆM vì \(\Delta'=1-4=-3< 0\)

Thay x=2 vào pt (2) ta được: \(\frac{1}{2}+\frac{1}{y-1}=\frac{3}{2}\Leftrightarrow\frac{1}{y-1}=1\Leftrightarrow y-1=1\Leftrightarrow x=2\left(tm\right)\)

Vậy nghiệm của hệ pt là(x;y)=(2;2)

7 tháng 9 2021

mấy bài này thì bạn cứ đặt ẩn phụ cho dễ nhìn hơn mà giải nhé 

a, \(\hept{\begin{cases}\frac{1}{2x-y}+x+3y=\frac{3}{2}\\\frac{4}{2x-y}-5\left(x+3y\right)=-3\end{cases}}\)ĐK : \(2x\ne y\)

Đặt \(\frac{1}{2x-y}=t;x+3y=u\)hệ phương trình tương đương 

\(\hept{\begin{cases}t+u=\frac{3}{2}\\4t-5u=-3\end{cases}\Leftrightarrow\hept{\begin{cases}4t+4u=6\\4t-5u=-3\end{cases}}\Leftrightarrow\hept{\begin{cases}9u=9\\4t=-3+5u\end{cases}}\Leftrightarrow\hept{\begin{cases}u=1\\t=\frac{-3+5}{4}=\frac{1}{2}\end{cases}}}\)

Theo cách đặt \(\hept{\begin{cases}x+3y=1\\\frac{1}{2x-y}=\frac{1}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}x+3y=1\\2x-y=2\end{cases}}\Leftrightarrow\hept{\begin{cases}2x+6y=2\\2x-y=2\end{cases}\Leftrightarrow}\hept{\begin{cases}7y=4\\x=\frac{y+2}{2}\end{cases}\Leftrightarrow}\hept{\begin{cases}y=\frac{4}{7}\\x=\frac{9}{7}\end{cases}}}\)

Vậy hệ pt có một nghiệm (x;y) = (9/7;4/7) 

NV
5 tháng 11 2019

Bài 1:

Đặt \(\left(x+y;y+z;z+x\right)=\left(a;b;c\right)\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=6\)

\(P=\frac{1}{2a+b+c}+\frac{1}{a+b+2c}+\frac{1}{a+2b+c}\)

\(P=\frac{1}{a+a+b+c}+\frac{1}{a+b+c+c}+\frac{1}{a+b+b+c}\)

\(\Rightarrow P\le\frac{1}{16}\left(\frac{2}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{b}+\frac{2}{c}+\frac{1}{a}+\frac{2}{b}+\frac{1}{c}\right)\)

\(\Rightarrow P\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{6}{4}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{2}\) hay \(x=y=z=\frac{1}{4}\)

NV
5 tháng 11 2019

Bài 2:

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2-xy=5\\\left(x+y\right)\left(x^2+y^2-xy\right)=5x+15y\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x^2+y^2-xy=5\\5\left(x+y\right)=5x+15y\end{matrix}\right.\)

\(\Rightarrow10y=0\Rightarrow y=0\)

Thay vào pt đầu: \(x^2=5\Rightarrow x=\pm\sqrt{5}\)

Vậy nghiệm của hệ là \(\left(x;y\right)=\left(\sqrt{5};0\right);\left(-\sqrt{5};0\right)\)