Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.\left\{{}\begin{matrix}4\dfrac{1}{x}+\dfrac{1}{y}=12\\\dfrac{1}{x}+\dfrac{1}{y}=-3\end{matrix}\right.\) (1)
ĐK xác định : x≠0 ; y≠0
Đặt ẩn phụ : a = \(\dfrac{1}{x}\) ; b = \(\dfrac{1}{y}\)
Thay vào (1) ta được :
\(\left\{{}\begin{matrix}4a+b=12\\a+b=-3\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}3a=15\\a+b=-3\end{matrix}\right.< =>\left\{{}\begin{matrix}a=5\\b=-8\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=\dfrac{1}{5}\\y=-\dfrac{1}{8}\end{matrix}\right.\)
Vậy S = {(\(\dfrac{1}{5};-\dfrac{1}{8}\))}
\(b.\left\{{}\begin{matrix}5\dfrac{1}{x}+2\dfrac{1}{y}=6\\2\dfrac{1}{x}-\dfrac{1}{y}=3\end{matrix}\right.\) (2)
ĐK xác định : x≠0 ; y≠0
Đặt ẩn phụ : a = 1/x ; b = 1/y
Thay vào (2) ta được : \(\left\{{}\begin{matrix}5a+2b=6\\2a-b=3\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}5a+2b=6\\4a-2b=6\end{matrix}\right.< =>\left\{{}\begin{matrix}9a=12\\2a-b=3\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}a=\dfrac{4}{3}\\b=-\dfrac{1}{3}\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=\dfrac{3}{4}\\y=-3\end{matrix}\right.\)
Vậy S = {(\(\dfrac{3}{4};-3\) )}
c) \(\left\{{}\begin{matrix}3\dfrac{1}{x}-6\dfrac{1}{y}=2\\\dfrac{1}{x}-\dfrac{1}{y}=5\end{matrix}\right.\)
ĐK xác định : x≠0 ; y ≠0
Áp dụng quy tác cộng đại số ta có :
\(\left\{{}\begin{matrix}3\dfrac{1}{x}-6\dfrac{1}{y}=2\\\dfrac{1}{x}-\dfrac{1}{y}=5\end{matrix}\right.< =>\left\{{}\begin{matrix}3\dfrac{1}{x}-6\dfrac{1}{y}=2\\3\dfrac{1}{x}-3\dfrac{1}{y}=15\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}-3\dfrac{1}{y}=-13\\\dfrac{1}{x}-\dfrac{1}{y}=5\end{matrix}\right.< =>\left\{{}\begin{matrix}y=\dfrac{3}{13}\\x=\dfrac{3}{28}\end{matrix}\right.\)
Vậy S = {(\(\dfrac{3}{28};\dfrac{3}{13}\))}
d) \(\left\{{}\begin{matrix}\dfrac{1}{x}-4\dfrac{1}{y}=5\\2\dfrac{1}{x}-3\dfrac{1}{y}=1\end{matrix}\right.\)
ĐK xác định : x≠0 ; y≠0
áp dụng quy tắc cộng đại số ta có :
\(\left\{{}\begin{matrix}\dfrac{1}{x}-4\dfrac{1}{y}=5\\2\dfrac{1}{x}-3\dfrac{1}{y}=1\end{matrix}\right.< =>\left\{{}\begin{matrix}2\dfrac{1}{x}-8\dfrac{1}{y}=10\\2\dfrac{1}{x}-3\dfrac{1}{y}=1\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}-5\dfrac{1}{y}=9\\\dfrac{1}{x}-4\dfrac{1}{y}=5\end{matrix}\right.< =>\left\{{}\begin{matrix}y=-\dfrac{5}{9}\\x=-\dfrac{5}{11}\end{matrix}\right.\)
Vậy S = {(\(-\dfrac{5}{11};-\dfrac{5}{9}\))}
e) ĐK xác định x≠0 ; y≠0
\(\left\{{}\begin{matrix}\dfrac{1}{x}-3\dfrac{1}{y}=4\\6\dfrac{1}{x}-\dfrac{1}{y}=2\end{matrix}\right.< =>\left\{{}\begin{matrix}\dfrac{1}{x}-3\dfrac{1}{y}=4\\18\dfrac{1}{x}-3\dfrac{1}{y}=6\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}-17\dfrac{1}{x}=-2\\\dfrac{1}{x}-3\dfrac{1}{y}=4\end{matrix}\right.\) <=>\(\left\{{}\begin{matrix}x=\dfrac{17}{2}\\y=-\dfrac{17}{22}\end{matrix}\right.\)
Vậy S={(\(\dfrac{17}{2};-\dfrac{17}{22}\))}
(1) + rút y từ pt (2) thay vào pt (1), ta được pt bậc hai 1 ẩn x, dễ rồi, tìm x rồi suy ra y
(2) + (3)
+ pt nào có nhân tử chung thì đặt nhân tử chung (thật ra chỉ có pt (2) của câu 2 là có nhân từ chung)
+ trong hệ, thấy biểu thức nào giống nhau thì đặt cho nó 1 ẩn phụ
VD hệ phương trình 3: đặt a= x+y ; b= căn (x+1)
+ khi đó ta nhận được một hệ phương trình bậc nhất hai ẩn, giải hpt đó rồi suy ra x và y
Đặt ẩn phụ nhé
\(\dfrac{1}{x+y}=a;\dfrac{1}{x-y}=b=< =>\int_{2a-3b=1}^{a+b=3}< =>\int_{2.\left(3-b\right)-3b=1}^{,a=3-b}< =>\int_{b=1}^{a=2}\)
<=>\(\dfrac{1}{x+y}=2;\dfrac{1}{x-y}=1< =>\int_{x-y=1}^{x+y=2}< =>\int_{y=0,5}^{x=1,5}\)
Đặt :
\(\left\{{}\begin{matrix}\dfrac{1}{x+y}=u\\\dfrac{1}{x-y}=v\end{matrix}\right.\)
Ta có hệ phương trình :
\(\left\{{}\begin{matrix}u+v=3\\2u-3v=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2u+2v=6\\2u-3v=1\end{matrix}\right.\)
\(\Leftrightarrow5v=5\Leftrightarrow v=1\)
Thay \(v=1\) vào phương trình thứ nhất ta đc :
\(u+1=3\Leftrightarrow u=2\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x+y}=2\\\dfrac{1}{x-y}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=\dfrac{1}{2}\\x-y=1\end{matrix}\right.\)
\(\Leftrightarrow2y=-\dfrac{1}{2}\Rightarrow y=-\dfrac{1}{4}\)
Thay \(y=-\dfrac{1}{4}\) vào phương trình thứ 2 ta được :
\(x+\dfrac{1}{4}=1\Leftrightarrow x=\dfrac{3}{4}\)
Vậy \(\left\{{}\begin{matrix}x=\dfrac{3}{4}\\y=-\dfrac{1}{4}\end{matrix}\right.\)
(1) <=> x=-1+y (3)
từ (2) và (3) suy ra:
\(\dfrac{2}{y-1}+\dfrac{3}{y}=2\)
<=>\(\dfrac{2y}{y\left(y-1\right)}+\dfrac{3\left(y-1\right)}{y\left(y-1\right)}=2\)
<=> \(\dfrac{2y+3y-3}{y\left(y-1\right)}=2\)
<=>\(\dfrac{5y-3}{y\left(y-1\right)}=2\)
<=> 5y-3=2y(y-1)
<=> 5y-3=\(2y^2-2y\)
<=>\(2y^2-7y-3=0\)
rồi bạn giải như bình thường là ra
ĐKXĐ:x khác 0 y khác 0
\(\left\{{}\begin{matrix}x-y=-1\\\dfrac{2}{x}+\dfrac{3}{y}=2\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}y=x+1\left(1\right)\\2y+3x=2xy\left(2\right)\end{matrix}\right.\)
Thay 1 vào 2 ta có:
2(x+1)+3x=2x(x+1)
<=>5x+2=2x2+2x
<=>2x2-3x+2=0
<=>2x2-3x+\(\dfrac{9}{8}\)+\(\dfrac{7}{8}\)=0
<=>2(x-\(\dfrac{3}{4}\))2+\(\dfrac{7}{8}\)=0(vô lí do \(2\left(x-\dfrac{3}{4}\right)^2\ge0\forall x\))
Vậy hệ vô nghiệm
Giải hệ sau :
Câu a :
\(\left\{{}\begin{matrix}x+y=-1\\2x+y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\-x=-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\x=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=-3\\x=2\end{matrix}\right.\)
Vậy ...........................
Câu b :
Đặt \(\left\{{}\begin{matrix}\dfrac{1}{x}=a\\\dfrac{1}{y}=b\end{matrix}\right.\) . Ta có :
\(\left\{{}\begin{matrix}a+b=\dfrac{1}{5}\\3a+4b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a+3b=\dfrac{3}{5}\\3a+4b=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-b=-\dfrac{7}{5}\\3a+4b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{7}{5}\\a=-\dfrac{6}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{7}{5}\\\dfrac{1}{y}=-\dfrac{6}{5}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{7}\\y=-\dfrac{5}{6}\end{matrix}\right.\)
Vậy..................
\(a,\left\{{}\begin{matrix}2x-y=4\\x+5y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-y=4\\2x+10y=6\end{matrix}\right.\left\{{}\begin{matrix}11y=2\\2x+10y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2}{11}\\2x+10.\dfrac{2}{11}=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2}{11}\\2x=\dfrac{46}{11}\end{matrix}\right.\left\{{}\begin{matrix}y=\dfrac{2}{11}\\x=\dfrac{23}{11}\end{matrix}\right.\)
bạn làm thế nào đẻ ghi được hệ vậy, chỉ mình vói sau đó minh se viet loi giai cho bạn
trên chỗ trả lời có chỗ ghi hệ mà bạn (cạnh lệnh TEX ý) rồi bạn chọn lệnh thứ 4 từ phải qua trái rồi bạn chọn số pt trong hệ pt và điền vô thôi :v (mình không biết edit ảnh nên chắc bạn khó hiểu)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x+y-2}+1+\dfrac{4}{x+2y}=3\\\dfrac{x+y-2+2}{x+y-2}-\dfrac{8}{x+2y}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x+y-2}+\dfrac{4}{x+2y}=2\\\dfrac{2}{x+y-2}-\dfrac{8}{x+2y}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x+y-2}=1\\\dfrac{1}{x+2y}=\dfrac{1}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=3\\x+2y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
ĐKXĐ: x<>0; y<>0
\(\left\{{}\begin{matrix}\dfrac{5}{x}+\dfrac{3}{y}=1\\\dfrac{2}{x}+\dfrac{1}{y}=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{x}+\dfrac{3}{y}=1\\\dfrac{6}{x}+\dfrac{3}{y}=-3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-\dfrac{1}{x}=4\\\dfrac{2}{x}+\dfrac{1}{y}=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{4}\\\dfrac{1}{y}=-1-\dfrac{2}{x}=-1-2:\dfrac{-1}{4}=-1+8=7\end{matrix}\right.\)
=>x=-1/4 và y=1/7
ĐKXĐ: \(\left\{{}\begin{matrix}x\ne0\\y\ne0\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}a=\dfrac{1}{x}\\b=\dfrac{1}{y}\end{matrix}\right.\)
Hệ phương trình trở thành \(\left\{{}\begin{matrix}5a+3b=1\\2a+b=-1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}b=-1-2a\\5a+3\left(-1-2a\right)=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}b=-1-2a\\-a-3=1\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}a=-4\\b=-1-2.\left(-4\right)\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=-4\\b=7\end{matrix}\right.\)
Ta có: \(\left\{{}\begin{matrix}a=\dfrac{1}{x}=-4\\b=\dfrac{1}{y}=7\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{4}\left(tm\right)\\y=\dfrac{1}{7}\left(tm\right)\end{matrix}\right.\)
Vậy HPT có nghiệm \(x=-\dfrac{1}{4}\) và \(y=\dfrac{1}{7}\)