Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\left\{{}\begin{matrix}\left(2x+y\right)^2-5\left(4x^2-y^2\right)+6\left(2x-y\right)^2=0\\2x+y+\dfrac{1}{2x-y}=3\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}2x+y=a\\2x-y=b\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a^2-5ab+6b^2=0\left(1\right)\\a+\dfrac{1}{b}=3\left(2\right)\end{matrix}\right.\)
\(\Rightarrow\left(1\right)\Leftrightarrow\left(2b-a\right)\left(3b-a\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=2b\\a=3b\end{matrix}\right.\)
Thế vô (2) làm tiếp sẽ ra
b/ \(\left\{{}\begin{matrix}2x^3+y\left(x+1\right)=4x^2\left(1\right)\\5x^4-4x^6=y^2\left(2\right)\end{matrix}\right.\)
\(\Rightarrow\left(1\right)\Leftrightarrow2x^3+y=4x^2-xy\)
\(\Leftrightarrow4x^6+4x^3y+y^2=16x^4-8x^3y+x^2y^2\)
\(\Leftrightarrow4x^6+4x^3y+5x^4-4x^6=16x^4-8x^3y+x^2y^2\)
\(\Leftrightarrow11x^4-12x^3y+x^2y^2=0\)
\(\Leftrightarrow x^2\left(11x^2-12xy+y^2\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\11x^2-12xy+y^2=0\end{matrix}\right.\)
Tới đây thì đơn giản rồi làm nốt nhé.
a) \(\left\{{}\begin{matrix}5x+3y=-7\\2x-4y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x+3y=-7\\x-2y=3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}5x+3y=-7\\x=3+2y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5.\left(3+2y\right)+3y=-7\\x=3+2y\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}13y=-22\\x=3+2y\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-22}{13}\\x=3+2.\dfrac{-22}{13}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-22}{13}\\x=\dfrac{-5}{13}\end{matrix}\right.\)
Vậy hệ phương trình có nghiệm là: \(\left\{{}\begin{matrix}y=\dfrac{-22}{13}\\x=\dfrac{-5}{13}\end{matrix}\right.\).
b)\(\left\{{}\begin{matrix}7x+14y=17\\2x+4y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}14x+28y=34\\14x+28y=35\end{matrix}\right.\) (vô nghiệm)
Vậy hệ phương trình vô nghiệm.
Bài 1:
Đặt $\sqrt[4]{y^3-1}=a; \sqrt{x}=b$ $(a,b\geq 0$)
Khi đó hệ PT trở thành:
\(\left\{\begin{matrix} a+b=3\\ b^4+a^4+1=82\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a+b=3\\ a^4+b^4=81\end{matrix}\right.\)
Có: \(a^4+b^4=81\)
\(\Leftrightarrow (a^2+b^2)^2-2a^2b^2=81\)
\(\Leftrightarrow [(a+b)^2-2ab]^2-2a^2b^2=81\)
\(\Leftrightarrow (9-2ab)^2-2a^2b^2=81\)
\(\Leftrightarrow 2a^2b^2-36ab=0\)
\(\Leftrightarrow ab(ab-18)=0\Rightarrow \left[\begin{matrix} ab=0\\ ab=18\end{matrix}\right.\)
Nếu $ab=0$. Kết hợp với $a+b=3$ suy ra $(a,b)=(3,0); (0,3)$
$\Rightarrow (x,y)=(0, \sqrt[4]{82}); (9, 1)$
Nếu $ab=18$. Kết hợp với $a+b=3$ và định lý Vi-et đảo suy ra $a,b$ là nghiệm của pt: $X^2-3X+18=0$
Dễ thấy pt này vô nghiệm nên loại
Vậy......
Bài 2:
ĐK: ..........
Đặt $\sqrt{x+\frac{1}{y}}=a; \sqrt{x+y-3}=b$ $(a,b\geq 0$)
HPT \(\Leftrightarrow \left\{\begin{matrix} a+b=3\\ a^2+b^2+3=8\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a+b=3\\ a^2+b^2=5\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} a+b=3\\ (a+b)^2-2ab=5\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a+b=3\\ ab=2\end{matrix}\right.\)
Áp dụng định lý Vi-et đảo thì $a,b$ là nghiệm của pt $X^2-3X+2=0$
$\Rightarrow (a,b)=(2,1); (1,2)$
Nếu $(a,b)=(2,1)$
\(\Leftrightarrow \left\{\begin{matrix} x+\frac{1}{y}=4\\ x+y-3=1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x+\frac{1}{y}=4\\ x+y=4\end{matrix}\right.\Rightarrow y=\frac{1}{y}\Rightarrow y=\pm 1\)
$y=1\rightarrow x=3$
$y=-1\rightarrow y=5$
Nếu $(a,b)=(1,2)$
\(\Leftrightarrow \left\{\begin{matrix} x+\frac{1}{y}=1\\ x+y-3=4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x+\frac{1}{y}=1\\ x+y=7\end{matrix}\right.\Rightarrow y-\frac{1}{y}=6\)
\(\Rightarrow y^2-6y-1=0\Rightarrow y=3\pm \sqrt{10}\)
Nếu $y=3+\sqrt{10}\rightarrow x=4-\sqrt{10}$
Nếu $y=3-\sqrt{10}\rightarrow x=4+\sqrt{10}$
Vậy...........
\(\left\{{}\begin{matrix}x^2+y^2+2x+2y=7\\y^2-2xy-2x=10\end{matrix}\right.\)
\(\Rightarrow x^2+2xy+4x+2y=-3\)
\(\Leftrightarrow x^2+2\left(y+2\right)x+2y+3=0\)
\(\Delta'=\left(y+2\right)^2-\left(2y+3\right)=y^2+2y+1=\left(y+1\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x=-\left(y+2\right)+y+1=-1\\x=-\left(y+2\right)-\left(y+1\right)=-2y-3\end{matrix}\right.\)
Thế vào 1 trong 2 pt ban đầu là được
@Nguyễn Việt Lâm