\(x^2+y^3=1\)

\(x^2+y^5=x^3+y^2\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2021

x = 0 hoặc 1

y = 0 hoặc 1

Vì 0^n = 0

Và 1^n = 1

12 tháng 2 2021

nói cái gì không hiểu có tâm chút giải hết nguyên bài đi 

19 tháng 12 2015

a) Cả hai phương trình đều có chung \(\sqrt{x+3}\)

pt đầu suy ra  \(\sqrt{x+3}=2\sqrt{y-1}\)

pt sau suy ra \(\sqrt{x+3}=4-\sqrt{y+1}\)

Vậy \(2\sqrt{y-1}=4-\sqrt{y+1}\), đk y > 1

\(4\left(y-1\right)=16-8\sqrt{y+1}+y+1\)

\(8\sqrt{y+1}+3y-21=0\)

Đặt \(\sqrt{y+1}=t\)

=> y = t2 - 1

=> 8t + 3(t2 -1) -21 =0

3t2 + 8t - 24 = 0

=> t = ...

=> y = t2 - 1

=> \(\sqrt{x+3}=2\sqrt{y-1}\)

=> x =...

b) Trừ hai pt cho nhau ta có:

x2 - y2 = 3(y - x)

(x - y) (x + y + 3) = 0

=> x = y hoặc x + y + 3 = 0

Xét hai trường hợp, rút x theo y rồi thay trở lại một trong hai pt ban đầu tìm ra nghiệm

 

18 tháng 4 2016

\(\begin{cases}y^2-x\sqrt{\frac{y^2+2}{x}}=2x-2\left(1\right)\\\sqrt{y^2+1}+\sqrt[3]{2x-1}=1\left(2\right)\end{cases}\)

Điều kiện \(x>0\)

Chia cả 2 vế của phương trình (1) cho \(x\) ta được :

\(\frac{y^2+2}{x}-\sqrt{\frac{y^2+2}{x}}-2=0\)

\(\Leftrightarrow\begin{cases}\sqrt{\frac{y^2+2}{x}=-1}\\\sqrt{\frac{y^2+2}{x}=2}\end{cases}\) \(\Leftrightarrow\frac{y^2+2}{x}=4\)

                             \(\Leftrightarrow y^2=4x+2\)

Thế vào phương trình (2) ta được : \(\sqrt{4x-1}+\sqrt[3]{2x-1}=1\)

Đặt \(\sqrt{4x-1}=u,\left(u\ge0\right),\sqrt[3]{2x-1}=v\) ta có hệ : \(\begin{cases}u+v=1\\u^2-2v^3=1\end{cases}\)

Giải hệ ta được \(u=1;v=0\Rightarrow x=\frac{1}{2};y=0\)

Vậy nghiệm của hệ phương trình là : \(x=\frac{1}{2};y=0\)

 

7 tháng 4 2016

\(\begin{cases}x^2\left(x-3\right)-y\sqrt{y-3}=-2\left(1\right)\\3\sqrt{x-2}=\sqrt{y\left(y+8\right)}\left(2\right)\end{cases}\) Điều kiện \(x\ge2;y\ge0\) (*)

Khi đó (1) \(\Leftrightarrow x^3-3x^2+2=y\sqrt{y+3}\)

               \(\Leftrightarrow\left(x-1\right)^3-3\left(x-1\right)=\left(\sqrt{y+3}\right)^3-3\sqrt{y+3}\left(3\right)\)

Xét hàm số \(f\left(t\right)=t^3-3t\) trên \(\left(1;+\infty\right)\)

Ta có \(f\left(t\right)=3t^2-3=3\left(t^2-1\right)\ge0\) với mọi \(t\ge1\) suy ra hàm số đồng biến  trên  \(\left(1;+\infty\right)\)

Nên (3) \(\Leftrightarrow x-1=\sqrt{y+3}\Leftrightarrow x-2=\sqrt{y+3}-1\left(4\right)\)
(2) \(\Leftrightarrow9\left(x-2\right)=y^2+8\left(5\right)\)
Thay (4) vào (5) được \(9\left(\sqrt{y+3}-1\right)=y^2+8y\) (*)
\(\Leftrightarrow9\left(\sqrt{y+3}-2\right)=y^2+8y-9\Leftrightarrow\frac{9\left(y-1\right)}{\sqrt{y+3}+2}-\left(y-1\right)\left(y+9\right)=0\)
\(\Leftrightarrow\left(y-1\right)\left(\frac{9}{\sqrt{y+3}+2}-y-9\right)=0\Leftrightarrow y=1\)
Với \(y\ge0\) thì \(\frac{9}{\sqrt{y+3}+2}-y-9<0\) vậy (*) có nghiệm y=1, khi đó x=3
Kết luận : (x;y)=(3;1)

a,\(\hept{\begin{cases}x^2+y^2+\frac{2xy}{x+y}=1\\\sqrt{x+y}=x^2-y\end{cases}}\)

ĐK: \(x+y\ge0\)

\(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2-2xy+\frac{2xy}{x+y}=1\left(1\right)\\\sqrt{x+y}=x^2-y\left(2\right)\end{cases}}\)

Đặt \(\hept{\begin{cases}x+y=a\\2xy=b\end{cases}\left(a\ge0\right)}\)

\(\left(1\right)\Leftrightarrow a^2-b+\frac{b}{a}=1\)

\(\Leftrightarrow a^3-ab-a+b=0\)

\(\Leftrightarrow\left(a-1\right)\left(a^2+a-b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=1\\a^2+a-b=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x+y=1\left(3\right)\\\left(x+y\right)^2+\left(x+y\right)-xy=0\left(4\right)\end{cases}}\)

Thay (3) vào (2)  ta được

\(x^2-y=1\Leftrightarrow y=x^2-1\)

\(\Rightarrow1-x=x^2-1\Leftrightarrow x^2+x-2=0\Leftrightarrow\orbr{\begin{cases}x=1\Rightarrow y=0\\x=-2\Rightarrow y=3\end{cases}}\)

Giải (4) 

Ta có \(\left(x+y\right)^2\ge4xy\Rightarrow\left(x+y\right)^2-xy>0\)

do đó (4) không xảy ra

Vậy..........

18 tháng 4 2016

\(\begin{cases}xy\left(x+1\right)=x^3+y^2+x-y\left(1\right)\\3y\left(2+\sqrt{9x^2+3}\right)+\left(4y+2\right)\left(\sqrt{1+x+x^2}+1\right)=0\left(2\right)\end{cases}\)

Điều kiện xác định : mọi \(x\in Z\)

Ta có : \(xy\left(x+1\right)=x^3+y^2+x-y\Leftrightarrow x^3-x^2y+y^2-xy+x-y=0\)

                                                       \(\Leftrightarrow\left(x-y\right)\left(x^2-y-1\right)=0\Leftrightarrow\begin{cases}y=x\\y=x^2+1\end{cases}\)

Với \(y=x^2+1\) thay vào phương trình (2) ta được :

\(3\left(x^2+1\right)\left(2+\sqrt{9x^2+3}\right)+\left(4x^2+6\right)\left(\sqrt{1+x+x^2}+1\right)=0\)

Giải ra ta có phương trình vô  nghiệm

Với y=x, thay vào phương trình thứ 2, ta được :

\(3x\left(2+\sqrt{9x^2+3}\right)+\left(4x+2\right)\left(\sqrt{1+x+x^2}+1\right)=0\)

\(\Leftrightarrow3x\left(2+\sqrt{9x^2+3}\right)=-\left(2x+1\right)\left(\sqrt{3+\left(2x+1\right)^2}+2\right)\)

\(\Leftrightarrow3x\left(2+\sqrt{9x^2+3}\right)=\left(-2x-1\right)\left(\sqrt{3+\left(-2x-1\right)^2}+2\right)\)

Xét hàm số \(f\left(t\right)=t\left(\sqrt{t^2+2}+2\right)\)

Ta có : \(f'\left(t\right)=\sqrt{t^2+2}+2+\frac{t^2}{\sqrt{t^2+2}}>0\) suy ra hàm số đồng biến

Từ đó suy ra \(3x=-2x\Leftrightarrow x=-\frac{1}{5}\)

Vậy hệ phương trình có nghiệm \(\left(x,y\right)=\left(-\frac{1}{5};-\frac{1}{5}\right)\)

4 tháng 1 2016

Đặt \(\begin{cases} a=\dfrac{x^2+1}{y}\\ b=x+y \end{cases}\) thì hệ trở thành \(\begin{cases} a^2+b^2=10\\ a+b=4 \end{cases}\)

1 tháng 4 2019

\(\frac{27}{3\sqrt{3x-2}+6}+\frac{8+4x-x^2}{x\sqrt{6-x}+4}\ge\frac{3}{2}+\frac{2x-14}{3\sqrt{6-x}+2}>0\)

Nên phần còn lại vô nghiệm