Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}3x^2+xz-yz+y^2=2\left(1\right)\\y^2+xy-yz+z^2=0\left(2\right)\\x^2-xy-xz-z^2=2\left(3\right)\end{matrix}\right.\)
Lấy (2) cộng (3) ta được
\(x^2+y^2-yz-zx=2\) (4)
Lấy (1) - (4) ta được
\(2x\left(x+z\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-z\end{matrix}\right.\)
Xét 2 TH rồi thay vào tìm được y và z
1. \(\left\{{}\begin{matrix}6xy=5\left(x+y\right)\\3yz=2\left(y+z\right)\\7zx=10\left(z+x\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x+y}{xy}=\dfrac{6}{5}\\\dfrac{y+z}{yz}=\dfrac{3}{2}\\\dfrac{z+x}{zx}=\dfrac{7}{10}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{6}{5}\\\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{3}{2}\\\dfrac{1}{z}+\dfrac{1}{x}=\dfrac{7}{10}\end{matrix}\right.\)
Đến đây thì dễ rồi nhé
Lời giải:
\(\text{HPT}\Leftrightarrow \left\{\begin{matrix} \frac{1}{a}=\frac{1}{x}-\frac{1}{y}-\frac{1}{z}(1)\\ \frac{1}{b}=\frac{1}{y}-\frac{1}{z}-\frac{1}{x}(2)\\ \frac{1}{c}=\frac{1}{z}-\frac{1}{x}-\frac{1}{y}(3)\end{matrix}\right.\Rightarrow -\left [\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right]=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}(4)\)
Lấy \((1),(2),(3)+(4)\Rightarrow \left\{\begin{matrix} -\left(\frac{1}{b}+\frac{1}{c}\right)=\frac{2}{x}\\ -\left(\frac{1}{a}+\frac{1}{c}\right)=\frac{2}{y}\\ -\left(\frac{1}{a}+\frac{1}{b}\right)=\frac{2}{z}\end{matrix}\right.\rightarrow \left\{\begin{matrix} x=\frac{-2bc}{b+c}\\ y=\frac{-2ac}{a+c}\\ z=\frac{-2ab}{a+b}\end{matrix}\right.\)
Vậy nghiệm của HPT là \((x,y,z)=\left(\frac{-2bc}{b+c},\frac{-2ac}{a+c},\frac{-2ab}{a+b}\right)\)
Lời giải:
HPT \(\Leftrightarrow \left\{\begin{matrix} x(x+y+z)=2\\ y(y+z+x)=3\\ z(z+x+y)=4\end{matrix}\right.(*)\).
Dễ thấy $x+y+z\neq 0$. Khi đó ta có:
\(\frac{x}{y}=\frac{x(x+y+z)}{y(y+z+x)}=\frac{2}{3}(1)\)
\(\frac{y}{z}=\frac{y(y+z+x)}{z(z+x+y)}=\frac{3}{4}(2)\)
Từ \((1);(2)\Rightarrow \frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) .
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\Rightarrow x=2k; y=3k; z=4k\)
Thay vào PT thứ nhất của $(*)$ suy ra:
\(2k(2k+3k+4k)=2\)
\(\Leftrightarrow 18k^2=2\Rightarrow k=\pm \frac{1}{3}\)
Nếu \(k=\frac{1}{3}\Rightarrow (x,y,z)=(2k,3k,4k)=(\frac{2}{3}; 1; \frac{4}{3})\)
Nếu \(k=\frac{-1}{3}\Rightarrow (x,y,z)=(2k,3k,4k)=(\frac{-2}{3}; -1; \frac{-4}{3})\)
ta có : x+xy+y=1
<=> x(y+1) + (y+1)=2
<=> (x+1)(y+1)=2
tương tự(y+1)(z+1)=5
(x+1)(z+1)=10
ta đc hệ pt............
đặt x+1=a,y+1=b,z+1=c
ta có : ab=2 (1) , bc=5 (2) , ac=10
=> abc=2c , abc=5a , abc= 10b
=> 5a=10b=2c
+ 5a=10b
=> a=2b . (1)=> 2b^2=1=> b=1 hoặc b=-1
=> a=2 hoăc a=-2 . (2)=> c=5 hoăc c=-5
like nha :))
\(hpt\Leftrightarrow\left\{{}\begin{matrix}x+y+xy+1=4\\y+z+yz+1=2\\x+z+xz+1=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)\left(y+1\right)=4\\\left(y+1\right)\left(z+1\right)=2\\\left(x+1\right)\left(z+1\right)=2\end{matrix}\right.\)
Lấy \(\dfrac{pt\left(2\right)}{pt\left(3\right)}\Leftrightarrow\dfrac{y+1}{x+1}=1\)\(\Leftrightarrow y+1=x+1\)\(\Leftrightarrow x=y\)
Thay vào \(pt(1)\)\(\Leftrightarrow x^2+2x=3\Leftrightarrow\left(x+3\right)\left(x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=y=1\\x=y=-3\end{matrix}\right.\)
Thay vào \(pt\left(3\right)\)\(\Leftrightarrow\left[{}\begin{matrix}z+1+z=1\\z-3-3z=1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}z=0\\z=-2\end{matrix}\right.\)
Vậy....
BẤT ĐẲNG THỨC SCHUR VÀ PHƯƠNG PHÁP ĐỔI BIẾN P,Q,R - Tài liệu, chuyên đề, phương pháp về Bất đẳng thức - Diễn đàn Toán học x+y+z=p; xy+yz+xz=q; xyz=r
\(\left\{{}\begin{matrix}xy+y+x+1=10\\yz+y+z+1=5\\zx+x+z+1=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)\left(y+1\right)=10\\\left(y+1\right)\left(z+1\right)=5\\\left(z+1\right)\left(x+1\right)=2\end{matrix}\right.\)
\(\Rightarrow\left[\left(x+1\right)\left(y+1\right)\left(z+1\right)\right]^2=100\)
\(\Rightarrow\left(x+1\right)\left(y+1\right)\left(z+1\right)=10\)
\(\Rightarrow\left\{{}\begin{matrix}z+1=1\\x+1=2\\y+1=5\end{matrix}\right.\)