Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải hệ sau :
Câu a :
\(\left\{{}\begin{matrix}x+y=-1\\2x+y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\-x=-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\x=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=-3\\x=2\end{matrix}\right.\)
Vậy ...........................
Câu b :
Đặt \(\left\{{}\begin{matrix}\dfrac{1}{x}=a\\\dfrac{1}{y}=b\end{matrix}\right.\) . Ta có :
\(\left\{{}\begin{matrix}a+b=\dfrac{1}{5}\\3a+4b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a+3b=\dfrac{3}{5}\\3a+4b=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-b=-\dfrac{7}{5}\\3a+4b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{7}{5}\\a=-\dfrac{6}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{7}{5}\\\dfrac{1}{y}=-\dfrac{6}{5}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{7}\\y=-\dfrac{5}{6}\end{matrix}\right.\)
Vậy..................
\(a,\left\{{}\begin{matrix}2x-y=4\\x+5y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-y=4\\2x+10y=6\end{matrix}\right.\left\{{}\begin{matrix}11y=2\\2x+10y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2}{11}\\2x+10.\dfrac{2}{11}=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2}{11}\\2x=\dfrac{46}{11}\end{matrix}\right.\left\{{}\begin{matrix}y=\dfrac{2}{11}\\x=\dfrac{23}{11}\end{matrix}\right.\)
a)\(\Leftrightarrow\left\{{}\begin{matrix}25x+15y=40xy\left(1\right)\\24x+16y=40xy\left(2\right)\end{matrix}\right.\)
Lấy (1) trừ (2), ta được: x-y=0\(\Leftrightarrow x=y\)
Thay vào 5x+3y=8xy ta được: \(5x+3x=8x^2\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\).\(\Rightarrow\left[{}\begin{matrix}x=y=0\\x=y=1\end{matrix}\right.\)
Vậy hpt có nghiệm (0;0);(1;1).
b)\(\Leftrightarrow\left\{{}\begin{matrix}-5x+5y=5xy\left(1\right)\\4x+3y=5xy\left(2\right)\end{matrix}\right.\)
Lấy (2) trừ (1) ta được: 9x-2y=0 \(\Leftrightarrow y=\dfrac{9x}{2}\)
Thay vào -x+y=xy ta được: \(-x+\dfrac{9x}{2}=x^2\)
\(\Leftrightarrow-2x+9x=2x^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(TM\right)\\x=\dfrac{7}{2}\left(KTM\right)\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}y=0\left(TM\right)\\y=\dfrac{63}{4}\left(KTM\right)\end{matrix}\right.\)
Vậy hpt có nghiệm (0;0).
c) Từ 2x-y=5\(\Rightarrow y=2x-5\)
Thay vào \(\left(x+y+2\right)\left(x+2y-5\right)=0\), ta được:
\(\left(3x-3\right)\left(5x-15\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(TM\right)\\x=5\left(KTM\right)\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}y=1\left(TM\right)\\y=5\left(KTM\right)\end{matrix}\right.\)
Vậy hpt có nghiệm (3;1).
1) \(\left\{{}\begin{matrix}4x+y=2\\8x+3y=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=2-4x\\8x+3\left(2-4x\right)=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{4}\\y=1\end{matrix}\right.\)
2) 2 pt 3 ẩn không giải được.
3) \(\left\{{}\begin{matrix}3x+2y=6\\x-y=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=x-2\\3x+2\left(x-2\right)=6\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)
4) \(\left\{{}\begin{matrix}2x-3y=1\\-4x+6y=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{3y+1}{2}\\-4\cdot\frac{3y+1}{2}+6y=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=\varnothing\\x=\varnothing\end{matrix}\right.\)
5) \(\left\{{}\begin{matrix}2x+3y=5\\5x-4y=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{-3y+5}{2}\\5\cdot\frac{-3y+5}{2}-4y=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=1\end{matrix}\right.\)
6) \(\left\{{}\begin{matrix}3x-y=7\\x+2y=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=3x-7\\x+2\left(3x-7\right)=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)
7) \(\left\{{}\begin{matrix}x+4y=2\\3x+2y=4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2-4y\\3\left(2-4y\right)+2y=4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=\frac{1}{5}\\x=\frac{6}{5}\end{matrix}\right.\)
8) \(\left\{{}\begin{matrix}-x-y=2\\-2x-3y=9\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=-x-2\\-2x-3\left(-x-2\right)=9\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-5\end{matrix}\right.\)
9) \(\left\{{}\begin{matrix}2x-3y=2\\-4x+6y=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{3y+2}{2}\\-4\cdot\frac{3y+2}{2}+6y=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=\varnothing\\x=\varnothing\end{matrix}\right.\)
Coi PT thứ nhất là PT(1) và PT thứ 2 là PT(2)
a)
Từ PT$(2)\Rightarrow y=18-5x$
Thế vào PT$(1)$: $3x-2(18-5x)=5$
$\Leftrightarrow 13x=41\Leftrightarrow x=\frac{41}{13}$
\(y=18-5x=18-5.\frac{41}{13}=\frac{29}{13}\)
Vậy.......
b)
PT\((1)\Rightarrow y=2x-8\)
Thế vào $PT(2)\Rightarrow$ \(x+3(2x-8)=10\)
$\Leftrightarrow 7x=34\Rightarrow x=\frac{34}{7}$
$y=2x-8=2.\frac{34}{7}-8=\frac{12}{7}$
Vậy........
c)
HPT \(\Leftrightarrow \left\{\begin{matrix} 12x-9y=6\\ 12x-16y=-8\end{matrix}\right.\)
Từ PT$(1)\Rightarrow 12x=9y+6$
Thế vào PT$(2)\Rightarrow 9y+6-16y=-8$
$\Leftrightarrow y=2$
$x=\frac{9y+6}{12}=\frac{9.2+6}{12}=2$
Vậy.........
d)
HPT \(\Leftrightarrow \left\{\begin{matrix} 10x+25y=65\\ 10x-6y=-28\end{matrix}\right.\)
Từ PT$(1)\Rightarrow 10x=65-25y$
Thế vào PT$(2)\Rightarrow 65-25y-6y=-28$
$\Leftrightarrow y=3$
$x=\frac{65-25y}{10}=\frac{65-25.3}{10}=-1$
Vậy........
a)\(\left\{{}\begin{matrix}8x+2y=4\\8x+3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\4x+1=2\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}y=1\\x=\frac{1}{4}\end{matrix}\right.\)b)
\(\left\{{}\begin{matrix}12x-8y=44\\12x-15y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7y=35\\4x-5y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5\\4x-5.5=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5\\x=7\end{matrix}\right.\)c)\(\left\{{}\begin{matrix}9x=-18\\4x+3y=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\4.\left(-2\right)+3y=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=7\end{matrix}\right.\)
a) Xem lại đề
b) \(\left\{{}\begin{matrix}5x-3y=5\\2x+5y=33\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x-3y=5\\x=\frac{33-5y}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5.\frac{33-5y}{2}-3y=5\\x=\frac{33-5y}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}165-25y-6y=10\\x=\frac{33-5y}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}31y=155\\x=\frac{33-5y}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5\\x=\frac{33-5.5}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5\\x=4\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}\frac{x}{2}-\frac{y}{3}=0\\5x+y=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=13-5x\\\frac{x}{2}-\frac{13-5x}{3}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=13-5x\\\frac{3x-26+10x}{6}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=13-5x\\13x=26\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=13-5x\\x=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=13-5.2\\x=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}2x-3y=4\\x+2y=-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-3y=4\\2x+4y=-10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-7y=14\\x+2y=-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-2\\x+2.\left(-2\right)=-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-2\\x=-1\end{matrix}\right.\)
Vậy nghiệm của hệ phương trình là \(\left\{{}\begin{matrix}y=-2\\x=-1\end{matrix}\right.\)
Ta có: \(\left\{{}\begin{matrix}2x-3y=4\\x+2y=-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-3y=4\\-2x-4y=10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-7y=14\\2x-3y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-2\\2x-3\cdot\left(-2\right)=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-2\\2x+6=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-2\\2x=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-2\\x=-1\end{matrix}\right.\)
Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=-1\\y=-2\end{matrix}\right.\)