\(\begin{cases}x+y+z=-2\\x^2+y^2+z^2=6\\x^5+y^5+z^{ }=-32\end{cases...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2016

Đặt \(p=x+y+z\)

       \(q=xy+zy+zx\)

        \(r=xyz\)

Ta có :

    \(2q=\left(x+y+z\right)^2-\left(x^2+y^2+z^2\right)=4-6=-2\Rightarrow q=-1\)

Bây giờ ta sẽ đi tìm r

Đặt \(S_n=x^n+y^n+z^n\)

Khi đó \(S_0=3\)

           \(S_1=-2\)

            \(S_2=6\)

Ta có :

\(S_n-\left(x+y+z\right)S_{n-1}+\left(xy+yz+zx\right)S_{n-2}-xýzS_{n-3}=0\)

Suy ra \(S_n=-2S_{n-1}+S_{n-2}+rS_{n-3}\)

Lấy n = 3, ta được :

\(S_3=-2S_2+S_1+rS_0=-14+3r\)

Lấy n = 4, ta được :

\(S_4=-2S_3+S_2+rS_1=28-6r+6-2r=34-8r\)

Lấy n = 5, ta được :

\(S_5=-2S_4+S_3+rS_2=-68+16r-14+3r+6r=-82+25r\)

Mà \(S_5=-32\) nên r = 2.

Do đó x, y, z là nghiệm của phương trình

\(t^3+2t^2-t-2=0\Leftrightarrow t\in\left\{1;-1;-2\right\}\)

Vậy nghiệm của hệ là \(\left\{1;-1;-2\right\}\) và các hoán vị của nó

 

 

3 tháng 9 2019

em chưa học đến :)

3 tháng 9 2019

ok em

3 an 2 phuong trinh cai nay toan Dai Hoc ma

5 tháng 10 2020

Giả sử \(x\ge y\ge z\)cũng được mà.

7 tháng 1 2022

Đây ok chưa

Ko cop

Đặt \(\hept{\begin{cases}x+3y+2z\left(1\right)\\2x+2y+z=6\left(2\right)\\3x+y+z=6\left(3\right)\end{cases}}\)

Cộng \(\left(2\right)+\left(3\right)\)ta có \(\hept{\begin{cases}x+3y+2z=8\left(1\right)\\2x+2y+z=6\left(2\right)\\5x+3y+2z=12\left(4\right)\end{cases}}\)

Trừ \(\left(1\right)-\left(4\right)\), ta có : \(4x=4=x-1\)

Thay về hệ phương trính ta được :

\(\hept{\begin{cases}1+3y+2z=8\\2.1+2y+z=6\end{cases}}\hept{\begin{cases}y=1\\z=2\end{cases}}\)

Vậy hệ phương trình có nghiệm \(\hept{\begin{cases}x=1\\y=1\\z=2\end{cases}}\)

Hoàng Phong cop ở vietjjack

Tham khảo bài làm ạ:

TL:

Đưa hệ phương trình về hệ dạng tam giác bằng cách dần ẩn số, ta có:

\(\Leftrightarrow\hept{\begin{cases}x+3y+2z=8\\2x+2y+z=6\\3x+y+z=6\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+3y+2z=8\\4x+4y+2z=12\\6x+2y+2z=12\end{cases}}\)  \(\Leftrightarrow\hept{\begin{cases}x+3y+2z=8\\3x+y=4\\5x-y=4\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+3y+2z=8\\3x+y=4\\8x=8\end{cases}}\)  \(\Leftrightarrow\hept{\begin{cases}x=1\\y=1\\z=2\end{cases}}\)

Vậy hệ phương trình có nghiệm (x;y;z) = (1;1;2)

HT

9 tháng 6 2016

phương trình đầu tương đương với:

\(x\left(x^2+y^2\right)=y^4\left(y^2+1\right)\)

\(\Leftrightarrow x^3+xy^2-y^6-y^4=0\)

\(\Leftrightarrow\left(x^3-y^6\right)+\left(xy^2-y^4\right)=0\)

\(\Leftrightarrow\left(x-y^2\right)\left(x^2+xy^2+y^4\right)+y^2\left(x-y^2\right)=0\)

\(\Leftrightarrow\left(x-y^2\right)\left(x^2+xy^2+y^4+y^2\right)=0\)

TH1: \(x-y^2=0\Rightarrow x=y^2\) thay vào pt thứ hai ta tìm được nghiệm

      \(\sqrt{4y^2+5}+\sqrt{y^2+8}=6\)

       \(4y^2+5+y^2+8+2\sqrt{\left(4y^2+5\right)\left(y^2+8\right)}=36\)

       \(5y^2+13+2\sqrt{\left(4y^2+5\right)\left(y^2+8\right)}=36\)

       \(2\sqrt{\left(4y^2+5\right)\left(y^2+8\right)}=23-5y^2\)

        bình phương hai vế tiếp rồi đưa về pt trùng phương, bạn tự giải tiếp nhé

TH2: \(x^2+xy^2+y^4+y^2=0\), coi x là ẩn, tìm x theo y ta có 

        \(\Delta=y^4-4\left(y^4+y^2\right)=-3y^4-y^2\)

        Pt có nghiệm khi y =0, thay vào ta có từ pt thứ nhất suy ra x =0, nhưng pt thứ hai không thỏa mãn

1 tháng 4 2019

\(\frac{27}{3\sqrt{3x-2}+6}+\frac{8+4x-x^2}{x\sqrt{6-x}+4}\ge\frac{3}{2}+\frac{2x-14}{3\sqrt{6-x}+2}>0\)

Nên phần còn lại vô nghiệm