Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-4x-6=\sqrt{2x^2-8x+12}\)
\(\Leftrightarrow\left(x^2+2x\right)-\left(6x+6+\sqrt{2x^2-8x+12}\right)=0\)
\(\Leftrightarrow x\left(x+2\right)-\dfrac{36x^2+72x+36-\left(2x^2-8x+12\right)}{\left(6x+6\right)-\sqrt{2x^2-8x+12}}=0\)
\(\Leftrightarrow x\left(x+2\right)-\dfrac{2\left(17x+6\right)\left(x+2\right)}{\left(6x+6\right)-\sqrt{2x^2-8x+12}}=0\)
\(\Leftrightarrow\left(x+2\right)\left[x-\dfrac{2\left(17x+6\right)}{\left(6x+6\right)-\sqrt{2x^2-8x+12}}\right]=0\)
Pt \(x-\dfrac{2\left(17x+6\right)}{\left(6x+6\right)-\sqrt{2x^2-8x+12}}\) vô nghiệm
=> x + 2 = 0
<=> x = - 2 (nhận)
\(\sqrt{x+2-4\sqrt{x-2}}+\sqrt{x+7-6\sqrt{x-2}}=1\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-2}-2\right)^2}+\sqrt{\left(\sqrt{x-2}-3\right)^2}=1\)
\(\Leftrightarrow\left|\sqrt{x-2}-2\right|+\left|\sqrt{x-2}-3\right|=1\)
Ta có:
\(VT=\left|\sqrt{x-2}-2\right|+\left|3-\sqrt{x-2}\right|\ge\left|\sqrt{x-2}-2+3-\sqrt{x-2}\right|=1\)
Dấu "=" xảy ra khi \(\left(\sqrt{x-2}-2\right)\left(3-\sqrt{x-2}\right)\ge0\)
Bảng xét dấu:
Vậy \(6\le x\le11\)
Giải pt :
1
a. ĐKXĐ : \(x\ge4\)
Ta có :
\(\sqrt{x+3}-\sqrt{x-4}=1\\ \Leftrightarrow\sqrt{x+3}=1+\sqrt{x-4}\\ \Leftrightarrow x+3=x-3+2\sqrt{x-4}\\ \Leftrightarrow6=2\sqrt{x-4}\)
\(\Leftrightarrow3=\sqrt{x-4}\\ \Leftrightarrow x-4=9\)
\(\Leftrightarrow x=13\) (TM ĐKXĐ)
Vậy \(S=\left\{13\right\}\)
b.ĐKXĐ : \(-3\le x\le10\)
Ta có :
\(\sqrt{10-x}+\sqrt{x+3}=5\\ \Leftrightarrow13+2\sqrt{-x^2+7x+30}=25\\ \Leftrightarrow\sqrt{-x^2+7x+30}=6\\ \Leftrightarrow-x^2+7x+30=36\\ \Leftrightarrow-x^2+7x-6=0\\ \Leftrightarrow-x^2+x+6x-6=0\\ \Leftrightarrow-x\left(x-1\right)+6\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(6-x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\left(TMĐKXĐ\right)\\x=6\left(TMĐKXĐ\right)\end{matrix}\right.\)
Vậy \(S=\left\{1;6\right\}\)
a,\(\sqrt{x+6-4\sqrt{x+2}}+\sqrt{x+11-6\sqrt{x+2}}=1\) (*)(đk \(x\ge-2\))
<=> \(\sqrt{\left(x+2\right)-4\sqrt{x+2}+4}+\sqrt{\left(x+2\right)-6\sqrt{x+2}+9}\)=1
<=> \(\sqrt{\left(\sqrt{x+2}-2\right)^2}+\sqrt{\left(\sqrt{x+2}-3\right)^2}=1\)
<=> \(\left|\sqrt{x+2}-2\right|+\left|\sqrt{x+2}-3\right|\)=1 (1)
TH1: \(0\le\sqrt{x+2}< 2\)
Từ (1) =>\(2-\sqrt{x+2}+3-\sqrt{x+2}=1\)
<=> \(5-2\sqrt{x+2}=1\) <=> \(2\sqrt{x+1}=4\) <=> \(\sqrt{x+1}=2\)
<=> \(x+1=4\) <=> x=3(không t/m \(\sqrt{x+2}\le2\))
TH2 : \(2\le\sqrt{x+2}\le3\)
Từ (1) =>\(\sqrt{x+2}-2+3-\sqrt{x+2}=1\)
<=> \(1=1\) (luôn đúng)
Từ TH2 <=> 4\(\le x+2\le9\) <=> \(2\le x\le7\)
TH3 \(\sqrt{x+2}>3\)
Từ (1) => \(\sqrt{x+2}-2+\sqrt{x+2}-3=1\)
<=> \(2\sqrt{x+2}=6\) <=> \(\sqrt{x+2}=3\) <=> \(x+2=9\) <=> x=7 (không t/m \(\sqrt{x+2}>3\))
Vậy pt (*) có tập nghiệm S=\(\left\{2\le x\le7\right\}\)
b, \(x^2-10x+27=\sqrt{6-x}+\sqrt{x-4}\) (*) (đk :\(4\le x\le6\))
Vs a,b \(\ge0\) ta có \(\sqrt{a}+\sqrt{b}\le\sqrt{2\left(a^2+b^2\right)}\)(tự CM nha)
Dấu "=" xảy ra <=> a=b
Áp dụng bđt trên ta có: \(\sqrt{6-x}+\sqrt{x-4}\le\sqrt{2\left(6-x+x-4\right)}=\sqrt{2.2}=2\)
<=> \(\sqrt{6-x}+\sqrt{x-4}\le2\)(1)
Lại có: \(x^2-10x+27=x^2-10x+25+2=\left(x-5\right)^2+2\ge2\)
<=> \(x^2-10x+27\ge2\) (2)
Từ (1),(2) => Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}6-x=x-4\\x-5=0\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}6+4=2x\\x=5\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=5\\x=5\end{matrix}\right.\left(tm\right)\)
Vậy pt (*) có tập nghiệm S=\(\left\{5\right\}\)
c, \(x^2-2x-x\sqrt{x}-2\sqrt{x}+4=0\)(*) (đk: x\(\ge0\))
<=> \(x\left(x-2\right)-\sqrt{x}\left(x-2\right)-4\left(\sqrt{x}-1\right)=0\)
<=> \(\left(x-\sqrt{x}\right)\left(x-2\right)-4\left(\sqrt{x}-1\right)=0\)
<=> \(\sqrt{x}\left(\sqrt{x}-1\right)\left(x-2\right)-4\left(\sqrt{x}-1\right)=0\)
<=> \(\left(\sqrt{x}-1\right)\left[\sqrt{x}\left(x-2\right)-4\right]=0\)
<=> \(\left[{}\begin{matrix}\sqrt{x}-1=0\\\sqrt{x}\left(x-2\right)-4=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}\sqrt{x}=1\\\sqrt{x}\left(x-2\right)=4\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=1\\x\left(x-2\right)^2=16\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=1\\x\left(x^2-4x+4\right)-16=0\end{matrix}\right.\) <=>\(\left[{}\begin{matrix}x=1\\x^3-4x^2+4x-16=0\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}x=1\\x^2\left(x-4\right)+4\left(x-4\right)=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=1\\\left(x^2+4\right)\left(x-4\right)=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=1\\x-4=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=1\\x=4\end{matrix}\right.\left(tm\right)\)
Vậy pt (*) có tập nghiệm S=\(\left\{1;4\right\}\)
d) x2+3x+1=(x+3)\(\sqrt{x^2+1}\)
<=>(\(\sqrt{x^2+1}-3x+3\sqrt{x^2+1}-\left(x^2+1\right)=0\)
<=>\(\left(\sqrt{x^2+1}-3\right)\left(x-\sqrt{x^2+1}\right)=0\)
<=>\(\sqrt{x^2+1}=3\) hoặc \(x=\sqrt{x^2+1}\)
=>x=\(2\sqrt{2}\)
mầy câu 1;3;;4;5 cách làm nhu nhau(nhân liên hop hoac bình phuong lên)
1.
\(DK:x\in\left[-4;5\right]\)
\(\Leftrightarrow\sqrt{x-5}+\left(\sqrt{x+4}-3\right)=0\)
\(\Leftrightarrow\sqrt{x-5}+\frac{x-5}{\sqrt{x+4}+3}=0\)
\(\Leftrightarrow\sqrt{x-5}\left(1+\frac{\sqrt{x-5}}{\sqrt{x+4}+3}\right)=0\)
Vi \(1+\frac{\sqrt{x-5}}{\sqrt{x+4}+3}>0\)
\(\Rightarrow\sqrt{x-5}=0\)
\(x=5\left(n\right)\)
Vay nghiem cua PT la \(x=5\)
2.
\(DK:x\ge0\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x}-2\right)^2}+\sqrt{\left(\sqrt{x}-3\right)^2}=1\)
\(\Leftrightarrow|\sqrt{x}-2|+|\sqrt{x}-3|=1\)
Ta co:
\(|\sqrt{x}-2|+|\sqrt{x}-3|=|\sqrt{x}-2|+|3-\sqrt{x}|\ge|\sqrt{x}-2+3-\sqrt{x}|=1\)
Dau '=' xay ra khi \(\left(\sqrt{x}-2\right)\left(3-\sqrt{x}\right)\ge0\)
TH1:
\(\hept{\begin{cases}\sqrt{x}-2\ge0\\3-\sqrt{x}\ge0\end{cases}\Leftrightarrow4\le x\le9\left(n\right)}\)
TH2:(loai)
Vay nghiem cua PT la \(x\in\left[4;9\right]\)
a/ Giải rồi
b/ ĐKXĐ: \(x\ge-1\)
Đặt \(\sqrt{2x+3}+\sqrt{x+1}=t>0\)
\(\Rightarrow t^2=3x+4+2\sqrt{2x^2+5x+3}\) (1)
Pt trở thành:
\(t=t^2-6\Leftrightarrow t^2-t-6=0\Rightarrow\left[{}\begin{matrix}t=3\\t=-2\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{2x+3}+\sqrt{x+1}=3\)
\(\Leftrightarrow3x+4+2\sqrt{2x^2+5x+3}=9\)
\(\Leftrightarrow2\sqrt{2x^2+5x+3}=5-3x\left(x\le\frac{5}{3}\right)\)
\(\Leftrightarrow4\left(2x^2+5x+3\right)=\left(5-3x\right)^2\)
\(\Leftrightarrow...\)
e/ ĐKXD: \(x>0\)
\(5\left(\sqrt{x}+\frac{1}{2\sqrt{x}}\right)=2\left(x+\frac{1}{4x}\right)+4\)
Đặt \(\sqrt{x}+\frac{1}{2\sqrt{x}}=t\ge\sqrt{2}\)
\(\Rightarrow t^2=x+\frac{1}{4x}+1\)
Pt trở thành:
\(5t=2\left(t^2-1\right)+4\)
\(\Leftrightarrow2t^2-5t+2=0\Rightarrow\left[{}\begin{matrix}t=2\\t=\frac{1}{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x}+\frac{1}{2\sqrt{x}}=2\)
\(\Leftrightarrow2x-4\sqrt{x}+1=0\)
\(\Rightarrow\sqrt{x}=\frac{2\pm\sqrt{2}}{2}\)
\(\Rightarrow x=\frac{3\pm2\sqrt{2}}{2}\)
a) \(\sqrt{4x}=10\) (ĐKXĐ: 4x>=0 <=> x>=0)
\(\Leftrightarrow4x=100\)
\(\Leftrightarrow x=25\)
\(S=\left\{25\right\}\)
b) \(\sqrt{x^2-2x+1}=8\)
\(\Leftrightarrow\sqrt{\left(x-1\right)^2}=8\)
\(\Leftrightarrow x-1=8\)
\(\Leftrightarrow x=9\)
\(S=\left\{9\right\}\)
c) \(\sqrt{x^2-6x+9}=\sqrt{1-6x+9x^2}\)
\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=\sqrt{\left(1-3x\right)^2}\)
\(\Leftrightarrow x-3=1-3x\) hoặc \(\Leftrightarrow x-3=-1+3x\)
\(\Leftrightarrow x+3x=1+3\) \(\Leftrightarrow x-3x=-1+3\)
\(\Leftrightarrow4x=4\) \(\Leftrightarrow-2x=2\)
\(\Leftrightarrow x=1\) \(\Leftrightarrow x=-1\)
\(S=\left\{1;-1\right\}\)
d) \(\sqrt{2x-5}=x-2\)
\(\Leftrightarrow2x-5=x^2-4x+4\)
\(\Leftrightarrow-x^2+2x+4x-5-4=0\)
\(\Leftrightarrow-x^2+6x-9=0\)
\(\Leftrightarrow x^2-6x+9=0\)
\(\Leftrightarrow\left(x-3\right)^2=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
\(S=\left\{3\right\}\)
e) \(\sqrt{x^2-2x+1}=\sqrt{x+1}\)
\(\Leftrightarrow x^2-2x+1=x+1\)
\(\Leftrightarrow x^2-2x-x+1-1=0\)
\(\Leftrightarrow x^2-3x=0\)
\(\Leftrightarrow x\left(x-3\right)=0\)
\(\Leftrightarrow x=0\) hoặc \(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
\(S=\left\{0;3\right\}\)
g) \(\sqrt{x^2-9}-\sqrt{x-3}=0\) ( ĐKXĐ: x-3>=0 <=> x>=3)
\(\Leftrightarrow\sqrt{x^2-9}=\sqrt{x-3}\)
\(\Leftrightarrow x^2-9=x-3\)
\(\Leftrightarrow x^2-x-6=0\)
\(\Leftrightarrow x^2-3x+2x-6=0\)
\(\Leftrightarrow\left(x^2+2x\right)-\left(3x+6\right)=0\)
\(\Leftrightarrow x\left(x+2\right)-3\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)
\(\Leftrightarrow x+2=0\) hoặc \(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=-2\) \(\Leftrightarrow x=3\)
\(S=\left\{-2;3\right\}\)
h) \(\sqrt{x^2-4x+4}+\sqrt{x^2-6x+9}=1\)
\(\Leftrightarrow\sqrt{\left(x-2\right)^2}+\sqrt{\left(x-3\right)^2}=1\)
\(\Leftrightarrow x-2+x-3-1=0\)
\(\Leftrightarrow2x-6=0\)
\(\Leftrightarrow x=3\)
\(S=\left\{3\right\}\)
i) \(\sqrt{\frac{2x-3}{x-1}}=2\)
\(\Leftrightarrow\frac{2x-3}{x-1}=4\)
\(\Leftrightarrow4\left(x-1\right)=2x-3\)
\(\Leftrightarrow4x-4-2x+3=0\)
\(\Leftrightarrow2x-1=0\)
\(\Leftrightarrow x=\frac{1}{2}\)
\(S=\left\{\frac{1}{2}\right\}\)
l) \(x+y+12=4\sqrt{x}+6\sqrt{y-1}\)
\(\Leftrightarrow x+y-4\sqrt{x}+12-6\sqrt{y-1}=0\)
\(\Leftrightarrow\left(x-4\sqrt{x}+4\right)+\left(y-1-6\sqrt{y-1}+9\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)^2+\left(\sqrt{y-1}-3\right)^2=0\)
\(\Leftrightarrow\sqrt{x}-2=0\) hoặc \(\Leftrightarrow\sqrt{y-1}-3=0\)
\(\Leftrightarrow\sqrt{x}=2\) \(\Leftrightarrow\sqrt{y-1}=3\)
\(\Leftrightarrow x=4\) \(\Leftrightarrow y-1=9\)
\(\Leftrightarrow y=10\)
KẾT luận : ..............
Tới đây nhé, nếu mai chưa ai giải thì mình giải hộ cho
CHÚC BẠN HỌC TỐT!
m) \(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8+6\sqrt{x-1}}=5\)
<=> \(\sqrt{\left(x-1\right)-4\sqrt{x-1}+4}+\sqrt{\left(x-1\right)+6\sqrt{x-1}+9}=5\)
<=>\(\sqrt{\left(\sqrt{x-1}+2\right)^2}+\sqrt{\left(\sqrt{x-1}+3\right)^2}=5\)
<=>\(\sqrt{x-1}+2+\sqrt{x-1}+3=5\)
<=> \(2\sqrt{x-1}=0\)
<=> \(\sqrt{x-1}=0\) <=>x=1
Vậy \(S=\left\{1\right\}\)
n) \(\sqrt{x+\sqrt{2x-1}}+\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\) (*) ( đk \(x\ge\frac{1}{2}\))
<=> \(\left(\sqrt{x+\sqrt{2x-1}}+\sqrt{x-\sqrt{2x-1}}\right)^2=2\)
<=> \(x+\sqrt{2x-1}+x-\sqrt{2x-1}+2\sqrt{x^2-2x+1}=2\)
<=> 2x+\(2\sqrt{\left(x-1\right)^2=2}\)
<=> x+\(\left|x-1\right|=2\)(1)
TH1: \(\frac{1}{2}\le x\le1\)
Từ (1) => x+1-x=2
<=> 1=2(vô lý)
TH2: x>1
Từ (1)=> x+x-1=2
<=> 2x=3<=> \(x=\frac{2}{3}\)(tm pt (*))
Vậy \(S=\left\{\frac{2}{3}\right\}\)
p) \(\sqrt{2x-1}+\sqrt{x-2}=\sqrt{x+1}\) (*) (đk :\(x\ge2\))
Đặt \(\left\{{}\begin{matrix}x-2=a\left(a\ge0\right)\\x+1=b\left(b\ge0\right)\end{matrix}\right.\) =>a+b=2x-1
Có \(\sqrt{a+b}+\sqrt{a}=\sqrt{b}\)
<=> \(\sqrt{a+b}=\sqrt{b}-\sqrt{a}\)
<=> \(a+b=b-2\sqrt{ab}+a\)
<=> 0=\(-2\sqrt{ab}\)
=> \(\left[{}\begin{matrix}a=0\\b=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x+1=0\\x-2=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\) => x=2 (vì x=-1 không thỏa mãn pt(*))
Vậy \(S=\left\{2\right\}\)
q) \(\sqrt{x-7}+\sqrt{9-x}=x^2-16x+66\)(*) (đk : \(7\le x\le9\))
Với a,b\(\ge0\) có: \(\sqrt{a}+\sqrt{b}\le2\sqrt{\frac{a+b}{2}}\)(tự cm nha) .Dấu "=" xảy ra <=> a=b
Áp dụng bđt trên có:
\(\sqrt{x-7}+\sqrt{9-x}\le2\sqrt{\frac{x-7+9-x}{2}}=2\sqrt{\frac{2}{2}}=2\) (1)
Có x2-16x+66=(x2-16x+64)+2=(x-8)2+2 \(\ge2\) với mọi x (2)
Từ (1),(2) .Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}x-7=9-x\\x-8=0\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}2x=16\\x=8\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}x=8\\x=8\end{matrix}\right.\)<=> x=8( tm pt (*))
Vậy \(S=\left\{8\right\}\)
a: =>|x-2|+|x-3|=1
TH1: x<2
Pt sẽ là 2-x+3-x=1
=>5-2x=1
=>x=2(loại)
TH2: 2<=x<3
Pt sẽ là x-2+3-x=1
=>1=1(nhận)
TH3: x>=3
Pt sẽ là x-2+x-3=1
=>2x=6
=>x=3(nhận)
b: ĐKXĐ: x>=-2
\(\Leftrightarrow\left|\sqrt{x+2}-2\right|+\left|\sqrt{x+2}-3\right|=1\)
TH1: \(\sqrt{x+2}< 2\Leftrightarrow0< =x+2< 4\Leftrightarrow-2< =x< 2\)
Pt sẽ là \(2-\sqrt{x+2}+3-\sqrt{x+2}=1\)
=>5-2 căn x+2=1
=>2 căn x+2=4
=>x+2=4
=>x=2(loại)
TH2: 2<=căn x+2<3
=>4<=x+2<9
=>2<=x<7
Pt sẽ là \(\sqrt{x+2}-2+3-\sqrt{x+2}=1\)
=>1=1(nhận)
TH3: căn x+2>=3
=>x+2>=9
=>x>=7
Pt sẽ là \(\sqrt{x+2}-3+\sqrt{x+2}-2=1\)
=>2 căn x+2=6
=>x+2=9
=>x=7(nhận)
Mấy câu này chỉ cần tìm ĐKXĐ, chuyển vế phù hợp (có thể cần tìm thêm ĐK) rồi bình phương lên, giải bình thường nhé...chứ dài vậy...ko trả lời chi tiết được đâu bạn nhé!!(tick)