Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cần gấp thì mình làm cho
\(\sqrt{x^2+2x+1}=\sqrt{x+1}\left(đk:x\ge1\right)\)
\(< =>\sqrt{\left(x+1\right)^2}=\sqrt{x+1}\)
\(< =>x+1=\sqrt{x+1}\)
\(< =>\frac{x+1}{\sqrt{x+1}}=1\)
\(< =>\sqrt{x+1}=1< =>x=0\left(ktm\right)\)
ĐKXĐ : \(x\ge-1\)
Bình phương 2 vế , ta có :
\(x^2+2x+1=x+1\)
\(\Leftrightarrow x^2+2x+1-x-1=0\)
\(\Leftrightarrow x^2+x=0\)
\(\Leftrightarrow x\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}\left(TM\right)}\)\
Vậy ...............................
a/ \(\sqrt{x^2-6x+9}=\sqrt{6-2\sqrt{5}}\)
\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(\Leftrightarrow|x-3|=\sqrt{5}-1\)
Làm nốt
b/ \(\sqrt{9x^2-6x+1}-3\sqrt{\frac{7-4\sqrt{3}}{9}}=0\)
\(\Leftrightarrow\sqrt{\left(3x-1\right)^2}-\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(\Leftrightarrow|3x-1|=2-\sqrt{3}\)
Làm nốt
c/ \(\sqrt{2x^2-4x+2}-\sqrt{3-\sqrt{5}}=0\)
\(\Leftrightarrow\sqrt{4x^2-8x+4}-\sqrt{6-2\sqrt{5}}=0\)
\(\Leftrightarrow\sqrt{\left(2x-2\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}=0\)
\(\Leftrightarrow|2x-2|=\sqrt{5}-1\)
Làm nốt
Lê Duy Khương vừa thiếu ĐKXĐ vừa sai ._.
a) \(1+\sqrt{x^2-2x+6}=2x\)
\(\Leftrightarrow\sqrt{x^2-2x+6}=2x-1\)
ĐKXĐ : \(x\ge\frac{1}{2}\)
Bình phương hai vế
<=> x2 - 2x + 6 = 4x2 - 4x + 1
<=> 4x2 - 4x + 1 - x2 + 2x - 6 = 0
<=> 3x2 - 2x - 5 = 0 (*)
Dễ thấy (*) có a - b + c = 0 nên có hai nghiệm phân biệt x1 = -1 (ktm) ; x2 = 5/3 (tm)
Vậy phương trình có nghiệm x = 5/3
b) \(\sqrt{x^2+7}-\sqrt{x^2-8}=2\)
\(\Leftrightarrow\sqrt{x^2+7}=2+\sqrt{x^2-8}\)
ĐKXĐ : \(\orbr{\begin{cases}x\ge2\sqrt{2}\\x\le-2\sqrt{2}\end{cases}}\)
Đặt t = x2 + 7
\(pt\Leftrightarrow\sqrt{t}=2+\sqrt{t-15}\)( t ≥ 15 )
Bình phương hai vế
<=> \(t=t-15+4\sqrt{t-15}+4\)
<=> \(4\sqrt{t-15}=11\)
<=> \(\sqrt{t-15}=\frac{11}{4}\)
<=> t - 15 = 121/16
<=> t = 361/16 (tm)
=> x2 + 7 = 361/16
<=> x2 = 249/16
<=> \(x=\frac{\pm\sqrt{249}}{4}\)
Vậy phương trình có nghiệm \(x=\frac{\pm\sqrt{249}}{4}\)
a)
\(1+\sqrt{x^2-2x+6}=2x\)
\(\Leftrightarrow\sqrt{x^2-2x+6}=2x-1\)
\(\Leftrightarrow x^2-2x+6=\left(2x-1\right)^2\)
\(\Leftrightarrow x^2-2x+6=4x^2-4x+1\)
\(\Leftrightarrow4x^2-2x-5=0\)
Ta có \(\Delta'=b'^2-ac=\left(-1\right)^2-4.\left(-5\right)=21>0\)
Vậy phương trình có hai nghiệm phân biệt
\(x_1=\frac{1+\sqrt{21}}{4}\) ; \(x_2=\frac{1-\sqrt{21}}{4}\)
b)
\(\sqrt{x^2+7}-\sqrt{x^2-8}=2\)
\(\sqrt{x^2+7}=2+\sqrt{x^2-8}\)
ĐKXĐ: \(x\ne\pm\sqrt{8}\)
Khi đó ta có
\(x^2+7=x^2-8+2.2.\sqrt{x^2-8}+4\)
\(\Leftrightarrow4\sqrt{x^2-8}=4-8-7=-11\)
\(\Leftrightarrow\sqrt{x^2-8}=-\frac{11}{4}\) ( vô lí )
Vậy phương trình vô nghiệm
a) ta có : \(S=x_1+x_2=\dfrac{7}{2};P=x_1x_2=1\)
b) ta có \(S=x_1+x_2=\dfrac{-9}{2};P=x_1x_2=\dfrac{7}{2}\)
c) ta có : \(S=x_1+x_2=\dfrac{-4}{2-\sqrt{3}};P=x_1x_2=\dfrac{2+\sqrt{2}}{2-\sqrt{3}}\)
d) ta có : \(S=x_1+x_2=\dfrac{3}{1,4}=\dfrac{15}{7};P=x_1x_2=\dfrac{1,2}{1,4}=\dfrac{6}{7}\)
e) ta có : \(S=x_1+x_2=\dfrac{-1}{5};P=x_1x_2=\dfrac{2}{5}\)
a) Theo hệ thức Vi-ét :
x1+x2=\(\frac{-b}{a}=\frac{7}{2}\)
x1x2=\(\frac{c}{a}=\frac{2}{2}=1\)
b) theo hệ thức Vi-ét:
x1+x2=\(\frac{-b}{a}=\frac{-9}{2}\)
x1x2=\(\frac{c}{a}=\frac{7}{2}\)
c)x1+x2=\(\frac{-b}{a}=\frac{-4}{2-\sqrt{3}}=-8-4\sqrt{3}\)
x1x2=\(\frac{c}{a}=\frac{2+\sqrt{2}}{2-\sqrt{3}}\)
d) x1+x2=\(\frac{-b}{a}=\frac{3}{1,4}=\frac{15}{7}\)
x1x2=\(\frac{c}{a}=\frac{1,2}{1,4}=\frac{6}{7}\)
e) x1+x2=\(\frac{-b}{a}=\frac{-1}{5}\)
x1x2=\(\frac{c}{a}=\frac{2}{5}\)
\(x^2-2x-2-2\sqrt{2x+1}=0\)
\(\Leftrightarrow x^2-2x-8-\left(2\sqrt{2x+1}-6\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x+2\right)-\frac{4\left(2x+1\right)-36}{2\sqrt{2x+1}+6}=0\)
\(\Leftrightarrow\left(x-4\right)\left(x+2\right)-\frac{8\left(x-4\right)}{2\sqrt{2x+1}+6}=0\)
\(\Leftrightarrow\left(x-4\right)\left(x+2-\frac{8}{2\sqrt{2x+1}+6}\right)=0\)
Thấy: \(x+2-\frac{8}{2\sqrt{2x+1}+6}>0\)
\(\Rightarrow x-4=0\Rightarrow x=4\)
\(a,PT\Leftrightarrow\sqrt{x-1-2\sqrt{x-1}+1}=3\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-1\right)^2}=3\)
\(\Leftrightarrow\sqrt{x-1}=4\Leftrightarrow x-1=16\Leftrightarrow x=17\)
Vậy............................................
\(b,PT\Leftrightarrow\sqrt{\left(x^2-1\right)^2}=x-1\)
\(\Leftrightarrow x^2-1=x-1\Leftrightarrow x^2=x\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
Vậy...............................................
\(\sqrt{x^2-2x+1}-7=0\left(1\right)\)
\(\Leftrightarrow\sqrt{\left(x-1\right)^2}=7\Leftrightarrow\left|x-1\right|=7\)
TH1: \(x\ge1\)
\(\left(1\right)\Leftrightarrow x-1=7\Leftrightarrow x=8\)
TH2: \(x< 1\)
\(\left(1\right)\Leftrightarrow1-x=7\Leftrightarrow x=-6\)
Ta có: \(\sqrt{x^2-2x+1}-7=0\)
\(\Leftrightarrow\left|x-1\right|=7\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=7\\x-1=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-6\end{matrix}\right.\)