\(a,\dfrac{x^2-10x-29}{1971}+\dfrac{x^2-10x-27}{1973}=\dfrac{x^2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(\dfrac{x^2-10x-29}{1971}+\dfrac{x^2-10x-27}{1973}=\dfrac{x^2-10x-1971}{29}+\dfrac{x^2-10x-1973}{27}\)

\(\Leftrightarrow\dfrac{x^2-10x-29}{1971}-1+\dfrac{x^2-10x-27}{1973}-1=\dfrac{x^2-10x-1971}{29}-1+\dfrac{x^2-10x-1973}{27}-1\)

\(\Leftrightarrow\dfrac{x^2-10x-2000}{1971}+\dfrac{x^2-10x-2000}{1973}=\dfrac{x^2-10x-1971}{29}+\dfrac{x^2-10x-1973}{27}\)

\(\Leftrightarrow\dfrac{x^2-10x-2000}{1971}+\dfrac{x^2-10x-2000}{1973}-\dfrac{x^2-10x-1971}{29}-\dfrac{x^2-10x-1973}{27}=0\)

\(\Leftrightarrow\left(x^2-10x-2000\right)\left(\dfrac{1}{1971}+\dfrac{1}{1973}-\dfrac{1}{29}-\dfrac{1}{27}\right)=0\)

mà \(\dfrac{1}{1971}+\dfrac{1}{1973}-\dfrac{1}{29}-\dfrac{1}{27}\ne0\)

nên \(x^2-10x-2000=0\)

\(\Leftrightarrow x^2+40x-50x-2000=0\)

\(\Leftrightarrow x\left(x+40\right)-50\left(x+40\right)=0\)

\(\Leftrightarrow\left(x+40\right)\left(x-50\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+40=0\\x-50=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-40\\x=50\end{matrix}\right.\)

Vậy: S={-40;50}

17 tháng 4 2017

Ta có: \(\dfrac{x^2-10x-29}{1971}+\dfrac{x^2-10x-27}{1973}=\dfrac{x^2-10x-1971}{29}+\dfrac{x^2-10x-1973}{27}\)

\(\Leftrightarrow\left(\dfrac{x^2-10x-27}{1973}-1\right)+\left(\dfrac{x^2-10x-29}{1971}-1\right)=\left(\dfrac{x^2-10x-1971}{29}-1\right)+\left(\dfrac{x^2-10x-1973}{27}-1\right)\)

\(\Leftrightarrow\dfrac{x^2-10x-2000}{1973}+\dfrac{x^2-10x-2000}{1971}=\dfrac{x^2-10x-2000}{29}+\dfrac{x^2-10x-2000}{27}\)

\(\Leftrightarrow\left(x^2-10x-2000\right)\left(\dfrac{1}{1973}+\dfrac{1}{1971}-\dfrac{1}{29}-\dfrac{1}{27}\right)=0\)

\(\Leftrightarrow\left(x^2-10x-2000\right)=0\)\(\left(\dfrac{1}{1973}+\dfrac{1}{1971}-\dfrac{1}{29}-\dfrac{1}{27}\right)\ne0\)

\(\Leftrightarrow x^2-50x+40x-2000=0\)

\(\Leftrightarrow x\left(x-50\right)+40\left(x-50\right)=0\)

\(\Leftrightarrow\left(x-50\right)\left(x+40\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-50=0\\x+40=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=50\\x=-40\end{matrix}\right.\)

Vậy: Giá trị x thỏa mãn là: \(x=-40;50\)

17 tháng 4 2017

\(\Leftrightarrow\dfrac{x^2-10x-29}{1971}-1+\dfrac{x^2-10x-27}{1973}-1=\dfrac{x^2-10x-1971}{29}-1+\dfrac{x^2-10x-1973}{27}-1\)

\(\Leftrightarrow\dfrac{x^2-10x-2000}{1971}+\dfrac{x^2-10x-2000}{1973}=\dfrac{x^2-10x-2000}{29}+\dfrac{x^2-10x-2000}{27}\)

\(\Leftrightarrow\left(x^2-10x-2000\right)\left(\dfrac{1}{1971}+\dfrac{1}{1973}-\dfrac{1}{29}-\dfrac{1}{27}\right)=0\)

\(\dfrac{1}{1971}+\dfrac{1}{1973}-\dfrac{1}{29}-\dfrac{1}{27}\ne0\)

Nên \(x^2-10x-2000=0\)

<=> \(x^2-50x+40x-2000=0\)

<=> \(x\left(x-50\right)+40\left(x-50\right)=0\)

<=> \(\left(x-50\right)\left(x+40\right)=0\)

<=> \(x=50\) hoặc \(x=-40\)

Vậy tập nghiệm của phương trình là \(S=\left\{50;-40\right\}\)

26 tháng 4 2018

\(\text{a) }\dfrac{2-x}{2002}-1=\dfrac{1-x}{2003}-\dfrac{x}{2004}\\ \Leftrightarrow\dfrac{2-x-2002}{2002}=\left(\dfrac{1-x}{2003}-1\right)+\left(1-\dfrac{x}{2004}\right)\\ \Leftrightarrow\dfrac{2004-x}{2002}-\dfrac{2003-x}{2003}-\dfrac{2004-x}{2004}=0\\ \Leftrightarrow\left(2004-x\right)\left(\dfrac{1}{2002}-\dfrac{1}{2003}-\dfrac{1}{2004}\right)=0\\ \Leftrightarrow2004-x=0\left(\dfrac{1}{2002}-\dfrac{1}{2003}-\dfrac{1}{2004}\ne0\right)\\ \Leftrightarrow x=2004\)

Vậy phương trình có nghiệm \(x=2004\)

26 tháng 4 2018

\(\text{b) }\dfrac{x^2-10x-29}{1971}+\dfrac{x^2-10x-27}{1973}=\dfrac{x^2-10x-1971}{29}+\dfrac{x^2-10x-1973}{27}\left(\text{ Chữa đề }\right)\\ \Leftrightarrow\left(\dfrac{x^2-10x-29}{1971}-1\right)+\left(\dfrac{x^2-10x-27}{1973}-1\right)=\left(\dfrac{x^2-10x-1971}{29}-1\right)+\left(\dfrac{x^2-10x-1973}{27}-1\right)\\ \Leftrightarrow\dfrac{x^2-10x-2000}{1971}+\dfrac{x^2-10x-2000}{1973}-\dfrac{x^2-10x-2000}{29}-\dfrac{x^2-10x-2000}{27}=0\\ \Leftrightarrow\left(x^2-10x-2000\right)\left(\dfrac{1}{1971}+\dfrac{1}{1973}-\dfrac{1}{29}-\dfrac{1}{27}\right)=0\\ \Leftrightarrow x^2-10x-2000=0\left(\text{Vì }\dfrac{1}{1971}+\dfrac{1}{1973}-\dfrac{1}{29}-\dfrac{1}{27}\ne0\right)\\ \Leftrightarrow x^2-20x+10x-2000=0\\ \Leftrightarrow x\left(x-20\right)+10\left(x-20\right)=0\\ \Leftrightarrow\left(x+10\right)\left(x-20\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+10=0\\x-20=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-10\\x=20\end{matrix}\right.\)

Vậy phương trình có tập nghiệm \(S=\left\{-10;20\right\}\)

25 tháng 5 2021

`(x^2-10x-29)/1971+(x^2-10x-27)/1973=(x^2-10x-1971)/1929+(x^2-10x-1973)/1927`

`<=>(x^2-10x-29)/1971-1+(x^2-10x-27)/1973-1=(x^2-10x-1971)/1929-1+(x^2-10x-1973)/1927-1`

`<=>(x^2-10x-200)/1971+(x^2-10x-200)/1973=(x^2-10x-200)/1971+(x^2-10x-200)/1927`

`<=>(x^2-10x-200)(1/1971+1/1973-1/1929-1/1927)=0`

`<=>x^2-10x-200=0` do `1/1971+1/1973-1/1929-1/1927<0`

`<=>x^2-20x+10x-200=0`

`<=>x(x-20)+10(x-20)=0`

`<=>(x-20)(x+10)=0`

`<=>` \(\left[ \begin{array}{l}x=20\\x=-10\end{array} \right.\) 

Vậy `S={20,-10}`

10 tháng 2 2016

em moi hoc lop 7 thoi a doi xong ki 2 nha

10 tháng 2 2016

em mới học lớp 7 thôi

11 tháng 2 2016

\(\frac{x^2-10x-29}{1971}+\frac{x^2-10x-27}{1972}=\frac{x^2-10x-1971}{29}+\frac{x^2-10x-1973}{27}\)

\(\Leftrightarrow\frac{x^2-10x-29}{1971}-1+\frac{x^2-10x-27}{1973}-1=\frac{x^2-10x-1971}{29}+\frac{x^2-10x-1973}{27}-1\)

\(\Leftrightarrow\frac{x^2-10x-29-1971}{1971}+\frac{x^2-10x-27-1973}{1973}=\frac{x^2-10x-1971-29}{29}+\frac{x^2-10x-1973-27}{27}\)

\(\Leftrightarrow\frac{x^2-10x-2000}{1971}+\frac{x^2-10x-2000}{1973}-\frac{x^2-10x-2000}{29}-\frac{x^2-10x-2000}{27}=0\)

\(\Leftrightarrow\left(x^2-10x-2000\right)\left(\frac{1}{1971}+\frac{1}{1973}-\frac{1}{29}-\frac{1}{27}\right)=0\)

\(\Leftrightarrow x^2-10x-2000=0\)

\(\Leftrightarrow x^2-50x+40x-2000=0\)

\(\Leftrightarrow x\left(x-50\right)+40\left(x-50\right)=0\)

\(\Leftrightarrow\left(x-50\right)\left(x+40\right)=0\)

         Th1:   \(x-50=0\Leftrightarrow x=50\)

        Th2:  \(x+40=0\Leftrightarrow x=-40\)

Vậy tập nghiệm của phương trình là    \(S=\left\{50;-40\right\}\)

11 tháng 2 2016

hơi mất thời gian để chiều tôi làm cho

4 tháng 2 2017

Thêm (-1) vào từng số hạng=> tử số các số hạng là:  \(\left(x^2-10x-2000\right)\)

\(\Leftrightarrow x^2-10x-2000=0\Leftrightarrow\left(x-5\right)^2=2025=45^2\)

\(\orbr{\begin{cases}x=50\\x=-40\end{cases}}\)

3 tháng 2 2019

Câu a)

Giải phÆ°Æ¡ng trình,(x + 1)/2004 + (x + 2)/2003 = (x + 3)/2002 + (x + 4)/2001,Toán há»c Lá»p 8,bà i tập Toán há»c Lá»p 8,giải bà i tập Toán há»c Lá»p 8,Toán há»c,Lá»p 8

3 tháng 2 2019

b) x-45/55 + x-47/53 = x-55/45 + x-53/47
<=>x-45/55 -1 + x-47/53 -1= x-55/45 -1 + x-53/47 - 1
<=>x-100/55 + x-100/53 = x-100/45 + x-100/47
<=>(x-100)(1/55+1/53-1/45-1/47)=0
<=>x-100=0
<=>x=100

Vậy x = 100