\(\sqrt{2x+3}+\sqrt{2x+2}=1\)

b,

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2017

\(\sqrt{x-2}+\sqrt{x-1}=\sqrt{2x-3}\)

\(\Leftrightarrow\sqrt{2x-3}-\sqrt{x-1}-\sqrt{x-2}=0\)

\(\Leftrightarrow\dfrac{2x-3-x+1}{\sqrt{2x-3}+\sqrt{x-1}}-\sqrt{x-2}=0\)

\(\Leftrightarrow\dfrac{x-2}{\sqrt{2x-3}+\sqrt{x-1}}-\dfrac{x-2}{\sqrt{x-2}}=0\)

\(\Leftrightarrow\left(x-2\right)\left(\dfrac{1}{\sqrt{2x-3}+\sqrt{x-1}}-\dfrac{1}{\sqrt{x-2}}\right)=0\)

Pt \(\dfrac{1}{\sqrt{2x-3}+\sqrt{x-1}}-\dfrac{1}{\sqrt{x-2}}=0\) vô nghiệm

=> x - 2 = 0

<=> x = 2 (nhận)

21 tháng 7 2017

\(\sqrt{1-x}+\sqrt{4+x}=3\)

\(\Leftrightarrow\sqrt{1-x}-1+\sqrt{4+x}-2=0\)

\(\Leftrightarrow\dfrac{1-x-1}{\sqrt{1-x}+1}+\dfrac{4+x-4}{\sqrt{4+x}+\sqrt{2}}=0\)

\(\Leftrightarrow\dfrac{x}{\sqrt{4+x}+\sqrt{2}}-\dfrac{x}{\sqrt{1-x}+1}=0\)

\(\Leftrightarrow x\left(\dfrac{1}{\sqrt{4+x}+\sqrt{2}}-\dfrac{1}{\sqrt{1-x}+1}\right)=0\)

Pt \(\dfrac{1}{\sqrt{4+x}+\sqrt{2}}-\dfrac{1}{\sqrt{1-x}+1}=0\) vô nghiệm

=> x = 0

17 tháng 8 2019

1 + 1=

Ai có nhu cầu tình dục cao thì liên hẹ vs e nha, e làm cho, 20k thôi, e cần tiền chữa bệnh cho mẹ

AH
Akai Haruma
Giáo viên
30 tháng 7 2018

a) ĐK: \(x\ge -1\)

Ta có: \(x^2+\sqrt{x+1}=1\)

\(\Leftrightarrow (x^2-1)+\sqrt{x+1}=0\)

\(\Leftrightarrow (x-1)(x+1)+\sqrt{x+1}=0\)

\(\Leftrightarrow \sqrt{x+1}[(x-1)\sqrt{x+1}+1]=0\)

\(\Rightarrow \left[\begin{matrix} \sqrt{x+1}=0(1)\\ (x-1)\sqrt{x+1}+1=0(2)\end{matrix}\right.\)

Với \((1)\Rightarrow x+1=0\Rightarrow x=-1\) (thỏa mãn)

Với \((2)\Rightarrow x\sqrt{x+1}-(\sqrt{x+1}-1)=0\)

\(\Leftrightarrow x\sqrt{x+1}-\frac{x}{\sqrt{x+1}+1}=0\)

\(\Leftrightarrow x\left(\sqrt{x+1}-\frac{1}{\sqrt{x+1}+1}\right)=0\)

\(\Leftrightarrow x.\frac{x+1+\sqrt{x+1}-1}{\sqrt{x+1}+1}=0\)

\(\Leftrightarrow x.\frac{x+\sqrt{x+1}}{\sqrt{x+1}+1}=0\)

\(\Rightarrow \left[\begin{matrix} x=0\\ x+\sqrt{x+1}=0\end{matrix}\right.\)

Với \(x+\sqrt{x+1}=0\Rightarrow x=-\sqrt{x+1}\Rightarrow \left\{\begin{matrix} x\leq 0\\ x^2=x+1\end{matrix}\right.\Rightarrow x=\frac{1-\sqrt{5}}{2}\)

Vậy \(x=\left\{-1; \frac{1-\sqrt{5}}{2}; 0\right\}\)

AH
Akai Haruma
Giáo viên
30 tháng 7 2018

b) ĐK: \(-3\leq x\leq 6\)

Ta có: \((\sqrt{3+x}+\sqrt{6-x})^2=3+x+6-x+2\sqrt{(3+x)(6-x)}\)

\(=9+2\sqrt{(3+x)(6-x)}\geq 9\)

\(\Rightarrow \sqrt{3+x}+\sqrt{6-x}\geq 3\) do \(\sqrt{3+x}+\sqrt{6-x}\) không âm.

Dấu "=" xảy ra khi \(\sqrt{(3+x)(6-x)}=0\Leftrightarrow x=-3; x=6\)

Vậy \(x=-3\) or $x=6$

28 tháng 7 2019

Mk gợi ý nha phần còn lại bạn làm nốt nhá

\(a,\sqrt{2x-1}-\sqrt{3}=\sqrt{x^2+2x-5}-\sqrt{3}\)

\(\Leftrightarrow\frac{2x-4}{\sqrt{2x-1}+\sqrt{3}}=\frac{\left(x-2\right)\left(x+4\right)}{\sqrt{x^2+2x-5}+\sqrt{3}}\)

\(\Leftrightarrow\left(x-2\right)\left(\frac{2}{\sqrt{2x-1}+\sqrt{3}}-\frac{x+4}{\sqrt{x^2+2x-5}+\sqrt{3}}\right)=0\)

\(b,\sqrt{x\left(x^3-3x+1\right)}=\sqrt{x\left(x^3-x\right)}\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{x^3-3x+1}-\sqrt{x^3-x}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^3-3x+1=x^3-x\end{cases}}\)

Câu f sai đề thì phải 

\(\sqrt{x\left(x-1\right)}+\sqrt{x\left(2x-1\right)}=x\)

\(\sqrt{x}\left(\sqrt{x-1}+\sqrt{2x-1}-\sqrt{x}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\\sqrt{x-1}+\frac{2x-2}{\sqrt{2x-1}+1}+\frac{x-1}{1+\sqrt{x}}=0\end{cases}}\)

Câu g bình lên sau đó chuyển vế và bình lên 1 lần nữa

\(h,pt\Leftrightarrow\sqrt{2x-3}+6-\sqrt{4x+3}-9=0\)

Liên hợp nha bạn

Có mấy câu mk ko bít làm mong bạn thông cảm

20 tháng 9 2020

\(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=7\)

Ta đánh giá vế phải \(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=\sqrt{2\left(x-4\right)^2+9}+\sqrt{3\left(x-4\right)^2+16}\ge\sqrt{9}+\sqrt{16}=3+4=7\)(Do \(\left(x-4\right)^2\ge0\forall x\))

Như vậy, để \(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=7\)(hay dấu "=" xảy ra) thì \(\left(x-4\right)^2=0\)hay x = 4

Vậy nghiệm duy nhất của phương trình là 4

22 tháng 9 2020

f, \(\sqrt{8+\sqrt{x}}+\sqrt{5-\sqrt{x}}=5\left(đk:25\ge x\ge0\right)\)

\(< =>\sqrt{8+\sqrt{x}}-\sqrt{9}+\sqrt{5-\sqrt{x}}-\sqrt{4}=0\)

\(< =>\frac{8+\sqrt{x}-9}{\sqrt{8+\sqrt{x}}+\sqrt{9}}+\frac{5-\sqrt{x}-4}{\sqrt{5-\sqrt{x}}+\sqrt{4}}=0\)

\(< =>\frac{\sqrt{x}-1}{\sqrt{8+\sqrt{x}}+\sqrt{9}}-\frac{\sqrt{x}-1}{\sqrt{5-\sqrt{x}}+\sqrt{4}}=0\)

\(< =>\left(\sqrt{x}-1\right)\left(\frac{1}{\sqrt{8+\sqrt{x}}+\sqrt{9}}-\frac{1}{\sqrt{5-\sqrt{x}}+\sqrt{4}}\right)=0\)

\(< =>x=1\)( dùng đk đánh giá cái ngoặc to nhé vì nó vô nghiệm )

18 tháng 8 2020

lên hỏi đáp 247 hỏi cho nhanh !

12 tháng 8 2017

đăng ít một thôi bạn

12 tháng 8 2017

Bỏ câu c,d đi ạ 

11 tháng 7 2019

\(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\)     ( SỬA ĐỀ)

\(\sqrt{x-1-2.2.\sqrt{x-1}+4}+\sqrt{x-1-2.3.\sqrt{x-1}+9}=1\)

\(|x-1-2|+|x-1-3|=1\)

\(|x-3|+|x-4|=1\)

Với  \(x\le3\)thì  PT thành  \(3-x+4-x=1\) \(\Rightarrow-2x=-6\Rightarrow x=3\)(thõa mãn)

Với  \(3\le x< 4\)thì PT thành  \(x-3+4-x=1\Leftrightarrow0x=0\Rightarrow\)Đúng với mọi x từ \(3\le x< 4\)

Với  \(x\ge4\)thì PT thành  \(x-3+x-4=1\Leftrightarrow2x=8\Leftrightarrow x=4\)(thõa mãn)

Vậy  \(3\le x\le4\)

12 tháng 7 2019

Dấu căn của x-1 đâu bạn j eiiiii

27 tháng 2 2022

a) ĐKXĐ : \(x\ge5\)

Đặt \(\sqrt{x-5}=a;\sqrt[3]{3-x}=b\)(a \(\ge0\))

Khi đó phương trình thành a + b = 2

Lại có \(b^3+a^2=-2\)

=> HPT : \(\hept{\begin{cases}a+b=2\\b^3+a^2=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2-b\\b^3+\left(2-b\right)^2=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2-b\\b^3+b^2-4b+6=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=2-b\\\left(b+3\right)\left(b^2-2b+2\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2-b\\b=-3\end{cases}}\Leftrightarrow\hept{\begin{cases}a=5\\b=-3\end{cases}}\)(tm)

a = 5 => x = 30 (tm) 

Vậy x = 30 là nghiệm phương trình 

27 tháng 2 2022

d) Ta có \(\sqrt{25x^2-20x+4}+\sqrt{25x^2-40x+16}=0\)

<=> \(\sqrt{\left(5x-2\right)^2}+\sqrt{\left(5x-4\right)^2}=2\)

<=> |5x - 2| + |5x - 4| = 2

Lại có |5x - 2| + |5x - 4| = |5x - 2| + |4 - 5x| \(\ge\left|5x-2+4-5x\right|=2\)

Dấu "=" xảy ra <=> \(\left(5x-2\right)\left(4-5x\right)\ge0\Leftrightarrow\frac{2}{5}\le x\le\frac{4}{5}\)

Vậy \(\frac{2}{5}\le x\le\frac{4}{5}\)là nghiệm phương trình 

20 tháng 9 2016

câu d tách hđt r đánh giá . VP=(x-6)^2+2>=2 còn VP <=2 =>....
câu c tương tự 
câu b c bình phương oặc đặt ẩn :3