\(\frac{2x-4}{2014}+\frac{2x-2}{2016}< \frac{2x-1}{2017}+\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2020

\(\frac{2x-4}{2014}+\frac{2x-2}{2016}\)\(\frac{2x-1}{2017}+\frac{2x-3}{2015}\)

VT = \(\frac{2x-4}{2014}+\frac{2x-2}{2016}\)

= \(\frac{2x-4}{2014}+1+\frac{2x-2}{2016}+1\)

= \(\frac{2x-2018}{2014}+\frac{2x-2018}{2016}\)

VP = \(\frac{2x-1}{2017}+\frac{2x-3}{2015}\)

= \(\frac{2x-1}{2017}+1+\frac{2x-3}{2015}+1\)

= \(\frac{2x-2018}{2017}+\frac{2x-2018}{2015}\)

\(\frac{2x-2018}{2014}>\frac{2x-2018}{2015}\)\(\frac{2x-2018}{2016}>\frac{2x-2018}{2017}\)

nên \(\frac{2x-4}{2014}+\frac{2x-2}{2016}\) > \(\frac{2x-1}{2017}+\frac{2x-3}{2015}\)

Chúc bn học tốt!!

6 tháng 10 2020

Xét: \(\sqrt{1+n^2+\frac{n^2}{\left(n+1\right)^2}}=\sqrt{\frac{\left(n+1\right)^2+n^2\left(n+1\right)^2+n^2}{\left(n+1\right)^2}}\) (với \(n\inℕ\))

\(=\sqrt{\frac{n^2+2n+1+n^4+2n^3+n^2+n^2}{\left(n+1\right)^2}}\)

\(=\sqrt{\frac{n^4+n^2+1+2n^3+2n^2+2n}{\left(n+1\right)^2}}\)

\(=\sqrt{\frac{\left(n^2+n+1\right)^2}{\left(n+1\right)^2}}=\frac{n^2+n+1}{n+1}=n+\frac{1}{n+1}\)

Áp dụng vào ta tính được: \(\sqrt{1+2015^2+\frac{2015^2}{2016^2}}+\frac{2015}{2016}=2015+\frac{1}{2016}+\frac{2015}{2016}\)

\(=2015+1=2016\)

Khi đó: \(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=2016\)

\(\Leftrightarrow\left|x-1\right|+\left|x-2\right|=2016\)

Đến đây xét tiếp các TH nhé, ez rồi:))

6 tháng 10 2020

chẳng biết đúng ko,mới lớp 5

\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=\sqrt{1+2015^2+\frac{2015^2}{2016^2}}+\frac{2015}{2016}\)

\(\sqrt{x^2}-\sqrt{2x}+\sqrt{1}+\sqrt{x^2}-\sqrt{4x}+\sqrt{4}=\sqrt{1}+\sqrt{2015^2}+\sqrt{\frac{2015^2}{2016^2}}+\frac{2015}{2016}\)

\(\sqrt{x^2}-\sqrt{6x}+3=1+2015+\frac{2015}{2016}+\frac{2015}{2016}\)

\(x-\sqrt{6x}=1+\frac{2015}{1+2016+2016}-3\)

\(x-\sqrt{6x}=2-\frac{2015}{4033}\)

\(x-\sqrt{6x}=\frac{6051}{4033}\)

22 tháng 6 2020

ĐK: x khác - 24 

\(\frac{2x+5}{x+24}< 1\)

<=> \(\frac{2x+5}{x+24}-1< 0\)

<=> \(\frac{2x+5-x-24}{x+24}< 0\)

<=> \(\frac{x-19}{x+24}< 0\)

TH1: x - 19 < 0 và x + 24 > 0 

<=> x < 19 và x > -24  

<=>-24 < x < 19

Th2: x - 19 > 0 và x + 24 < 0 

<=> x > 19 và x < -24  loại 

Vậy -24 < x < 19

22 tháng 6 2020

\(\frac{2x+5}{x+24}< 1\)

<=> \(2x+5< x+24\)( nhân hai vế với x + 24 và giữ chiều )

<=> \(2x-x< 24-5\)

<=> \(x< 19\)

Vậy nghiệm của bất phương trình là x < 19 

AH
Akai Haruma
Giáo viên
8 tháng 9 2024

Lời giải:

Số số hạng ở tử: $(2x-2):2+1=x$ 

$\Rightarrow 2+4+6+...+2x=(2x+2).x:2=x(x+1)$

Số số hạng ở mẫu: $(2x+1-1):2+1=x+1$ 

$\Rightarrow 1+3+5+...+(2x+1)=(2x+1+1)(x+1):2=(x+1)^2$

Khi đó PT trở thành:

$\frac{x(x+1)}{(x+1)^2}=\frac{2016}{2015}$

$\frac{x}{x+1}=\frac{2016}{2015}$

$2015x=2016(x+1)$

$x=-2016$

19 tháng 2 2020

\(\Leftrightarrow\left(2x-1\right)\left(...\right)=0\Rightarrow x=\frac{1}{2}\)

19 tháng 2 2020

\(\frac{2x-1}{2020}-\frac{2x-1}{2019}+\frac{2x-1}{2018}=\frac{2x-1}{2017}-\frac{2x-1}{2016}\\ \Leftrightarrow\frac{2x-1}{2020}-\frac{2x-1}{2019}+\frac{2x-1}{2018}-\frac{2x-1}{2017}+\frac{2x-1}{2016}=0\\ \Leftrightarrow\left(2x-1\right)\left(\frac{1}{2020}-\frac{1}{2019}+\frac{1}{2018}-\frac{1}{2017}+\frac{1}{2016}\right)=0\)

\(\frac{1}{2020}-\frac{1}{2019}+\frac{1}{2018}-\frac{1}{2017}+\frac{1}{2016}\ne0\)

thì \(2x-1=0\\ \Leftrightarrow2x=1\\ \Leftrightarrow x=\frac{1}{2}\)

vậy \(x=\frac{1}{2}\)

20 tháng 4 2018

Bài 3 : 

\(\frac{x-1}{2016}+\frac{x-2}{2015}=\frac{x-3}{2014}+\frac{x-4}{2013}\)

\(\Leftrightarrow\)\(\left(\frac{x-1}{2016}-1\right)+\left(\frac{x-2}{2015}-1\right)=\left(\frac{x-3}{2014}-1\right)+\left(\frac{x-4}{2013}-1\right)\)

\(\Leftrightarrow\)\(\frac{x-1-2016}{2016}+\frac{x-2-2015}{2015}=\frac{x-3-2014}{2014}+\frac{x-4-2013}{2013}\)

\(\Leftrightarrow\)\(\frac{x-2017}{2016}+\frac{x-2017}{2015}=\frac{x-2017}{2014}+\frac{x-2017}{2013}\)

\(\Leftrightarrow\)\(\frac{x-2017}{2016}+\frac{x-2017}{2015}-\frac{x-2017}{2014}-\frac{x-2017}{2013}=0\)

\(\Leftrightarrow\)\(\left(x-2017\right)\left(\frac{1}{2016}+\frac{1}{2015}-\frac{1}{2014}-\frac{1}{2013}\right)=0\)

Vì \(\frac{1}{2016}+\frac{1}{2015}-\frac{1}{2014}-\frac{1}{2013}\ne0\)

Nên \(x-2017=0\)

\(\Rightarrow\)\(x=2017\)

Vậy \(x=2017\)

Chúc bạn học tốt ~ 

20 tháng 4 2018

Bài 1 : 

\(\left(8x-5\right)\left(x^2+2014\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}8x-5=0\\x^2+2014=0\end{cases}\Leftrightarrow\orbr{\begin{cases}8x=0+5\\x^2=0-2014\end{cases}}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}8x=5\\x^2=-2014\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{8}\\x=\sqrt{-2014}\left(loai\right)\end{cases}}}\)

Vậy \(x=\frac{5}{8}\)

Chúc bạn học tốt ~ 

7 tháng 2 2020

a) \(\frac{x+\frac{x+1}{5}}{3}=1-\frac{2x-\frac{1-2x}{34}}{5}\)

\(\Leftrightarrow\frac{\frac{5x+x+1}{5}}{3}=1-\frac{\frac{68x-1+2x}{34}}{5}\)

\(\Leftrightarrow\frac{6x+1}{15}=1-\frac{70-1}{170}\)

\(\Leftrightarrow\frac{6x+1}{15}+\frac{70x-1}{170}-1=0\)

\(\Leftrightarrow\frac{34\left(6x+1\right)+3\left(70x-1\right)-510}{510}=0\)

\(\Leftrightarrow204x+34+210x-3-510=0\)

\(\Leftrightarrow414x-479=0\)

\(\Leftrightarrow x=\frac{479}{414}\)

Vậy tập nghiệm của phương trình là \(S=\left\{\frac{479}{414}\right\}\)

20 tháng 2 2020

bạn ơi bạn làm được câu c chưa 

11 tháng 6 2020

\(\frac{x}{2x-3}-\frac{5}{x}=\frac{-1}{2x^2-3x}\)

\(< =>\frac{x^2}{2x^2-3x}-\frac{10x-15}{2x^2-3x}=\frac{-1}{2x^2-3x}\)

\(< =>x^2-10x+15=-1\)

\(< =>x^2-10x+16=0\)

Ta có : \(\Delta=100-4.16=100-64=36\)

nên phương trình sẽ có 2 nghiệm phân biệt

 \(x_1=\frac{10+\sqrt{36}}{2}=\frac{10+6}{2}=8\)

\(x_2=\frac{10-\sqrt{36}}{2}=\frac{10-6}{2}=2\)

vậy phương trình có 2 nghiệm phân biệt là {2;8}

\(\frac{x}{2x-3}-\frac{5}{x}=\frac{-1}{2x^2-3x}\) ĐKXĐ : \(x\ne0;\frac{3}{2}\)

\(\frac{2x}{x\left(2x-3\right)}-\frac{5\left(2x-3\right)}{x\left(2x-3\right)}=\frac{-1}{2x^2-3x}\)

\(\frac{2x}{2x^2-3x}-\frac{10x-15}{2x^2-3x}=\frac{-1}{2x^2-3x}\)

Khử mẫu ta đc ; \(2x-10x-15=-1\)

\(-12x=14\Leftrightarrow x=-\frac{7}{6}\)(tm)

6 tháng 5 2017

a) điều kiện : x-1\(\ne0\)

\(\frac{1}{x-1}>\frac{1}{2}\Rightarrow\frac{1\cdot2}{\left(x-1\right)\cdot2}>\frac{1\left(x-1\right)}{2\left(x-1\right)}\Leftrightarrow2>x-1\Leftrightarrow-x>-1-2\Leftrightarrow-x>-3\)

\(\Leftrightarrow x< 3\)

b) \(\frac{2x+3}{-2}< \frac{3}{-2}\Leftrightarrow2x+3>3\Leftrightarrow2x>3-3\Leftrightarrow2x>0\Leftrightarrow x>0\)

c) điều kiện :\(x\ne0\)

\(\frac{2x-1}{x}< \frac{1+x}{x}\Leftrightarrow2x-1< 1+x\Leftrightarrow2x-x< 1+1\Leftrightarrow x< 2\)

29 tháng 11 2019

Làm ngắn gọn thôi nhé :v

\(A=\frac{2x}{x^2-3x}+\frac{2x}{x^2-4x+3}+\frac{x}{x-1}\)

\(A=\frac{x^5-3x^4-3x^3+11x^2-6x}{x^5-8x^2+22x^2-24x+9}\)

\(A=\frac{x^4-3x^3-3x^2+11x-6}{x^4-8x^3+22x^2-24x+9}\)

\(A=\frac{\left(x-1\right)\left(x-1\right)\left(x+2\right)\left(x-3\right)}{\left(x-1\right)\left(x-1\right)\left(x-3\right)\left(x-3\right)}\)

\(A=\frac{x+2}{x-3}\)

\(B=\frac{x}{x+2}+\frac{2}{x-2}-\frac{4x}{4-x^2}\)

\(B=\frac{-x^4-4x^3+16x+16}{-x^4+8x^2-16}\)

\(B=\frac{\left(-x-2\right)\left(x+2\right)\left(x+2\right)\left(x-2\right)}{\left(-x-2\right)\left(x-2\right)\left(x+2\right)\left(x-2\right)}\)

\(B=\frac{x+2}{x-2}\)

\(C=\frac{1+x}{3-x}-\frac{1-2x}{3+x}-\frac{x\left(1-x\right)}{9-x^2}\)

\(C=\frac{1+x}{3-x}-\left(\frac{1-2x}{3+x}\right)-\frac{x\left(1-x\right)}{9-x^2}\)

\(C=\frac{10x}{-x^2+9}\)

\(D=\frac{5}{2x^2+6x}-\frac{4-3x^2}{x^2-9}-3\)

\(D=\frac{5}{2x^2+6x}-\left(\frac{4-3x^2}{x^2-9}\right)-3\)

\(D=\frac{51x^2+138x-45}{2x^4+6x^2-18x^2-54x}\)

\(D=\frac{3\left(17x-5\right)\left(x+3\right)}{2x\left(x+3\right)\left(x+3\right)\left(x-2\right)}\)

\(D=\frac{51x-15}{2x^3-18x}\)

\(E=\frac{3x+2}{x^2-2x+1}-\frac{6}{x^2-1}-\frac{3x-2}{x^2+2x+1}\)

\(E=\frac{3x+2}{x^2-2x+1}-\frac{6}{x^2-1}-\left(\frac{3x-2}{x^2+2x+1}\right)\)

\(E=\frac{10x^4-10}{x^6-3x^4+3x^2-1}\)

\(E=\frac{10\left(x^2+1\right)\left(x+1\right)\left(x-1\right)}{\left(x+1\right)\left(x+1\right)\left(x+1\right)\left(x-1\right)\left(x-1\right)\left(x-1\right)}\)

\(E=\frac{10x^2+10}{x^4-2x+1}\)