Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(4+\sqrt{15}\right)\left(4-\sqrt{15}\right)=1\Rightarrow\left(4+\sqrt{15}\right)^x\left(4-\sqrt{15}\right)^x=1\)
Đặt \(t=\left(4+\sqrt{15}\right)^x,t>0\Rightarrow\left(4-\sqrt{15}\right)^x=\frac{1}{t}\)
Bất phương trình đã cho trở thành :
\(t+\frac{1}{t}>8\Rightarrow t^2-8t+1>0\Leftrightarrow\left[\begin{array}{nghiempt}t>4+\sqrt{15}\\t< 4-\sqrt{15}\end{array}\right.\)
* \(t>4+\sqrt{15}\Rightarrow\left(4+\sqrt{15}\right)^x>4+\sqrt{15}\Rightarrow x>1\)
* \(t< 4-\sqrt{15}\Rightarrow\left(4+\sqrt{15}\right)^x< 4-\sqrt{15}\Rightarrow\left(4+\sqrt{15}\right)^x< \left(4+\sqrt{15}\right)^{-1}\Rightarrow x< -1\)
Vậy tập nghiệm của bất phương trình là \(S=\left(-\infty;-1\right)\cup\left(1;+\infty\right)\)
\(\frac{2x-5}{!x-3!}+1>0\Leftrightarrow\frac{2x-5+!x-3!}{!x-3}>0\)
do !x-3!>0 mọi x khác 3=> Bất phương trình tương đương
\(2x-5+!x-3!>0\Leftrightarrow!x-3!>5-2x\)
TH(1) x<3 <=>3-x>5-2x=> x>2
Kết luận(1) \(2< x< 3\)
TH(2) \(x\ge3\Leftrightarrow x-3>5-2x\Rightarrow3x>8\Rightarrow x>\frac{8}{3}\)
Kết luận(2) \(x\ge3\)
(1)và(2) nghiệm của Bpt là: x>2
lời giải
a)
\(\left(x+1\right)\left(2x-1\right)+x\le2x^2+3\)
\(\Leftrightarrow2x^2+x-1+x\le2x^2+3\)
\(\Leftrightarrow2x\le4\Rightarrow x\le2\)
\(\)b) \(\left(x+1\right)\left(x+2\right)\left(x+3\right)-x>x^3+6x^2-5\)
\(\left(x^2+3x+2\right)\left(x+3\right)-x>x^3+6x^2-5\)
\(x^3+3x^2+3x^2+9x+2x+6-x>x^3+6x^2-5\)
\(10x+6>-5\Rightarrow x>-\dfrac{11}{10}\)
c)Đkxđ: x≥0
x+√x>(2√x+3)(√x−1)
⇔x+√x>2x+√x−3
⇔x−3>0
⇔x>3. (tmđk).
\(\begin{cases}x^2\left(x-3\right)-y\sqrt{y-3}=-2\left(1\right)\\3\sqrt{x-2}=\sqrt{y\left(y+8\right)}\left(2\right)\end{cases}\) Điều kiện \(x\ge2;y\ge0\) (*)
Khi đó (1) \(\Leftrightarrow x^3-3x^2+2=y\sqrt{y+3}\)
\(\Leftrightarrow\left(x-1\right)^3-3\left(x-1\right)=\left(\sqrt{y+3}\right)^3-3\sqrt{y+3}\left(3\right)\)
Xét hàm số \(f\left(t\right)=t^3-3t\) trên \(\left(1;+\infty\right)\)
Ta có \(f\left(t\right)=3t^2-3=3\left(t^2-1\right)\ge0\) với mọi \(t\ge1\) suy ra hàm số đồng biến trên \(\left(1;+\infty\right)\)
Câu a)
\(\sqrt{(x-3)(8-x)}+x^2-11x=0\)
\(\Leftrightarrow \sqrt{11x-x^2-24}+x^2-11x=0(*)\)
Đặt \(\sqrt{11x-x^2-24}=a(a\geq 0)\Rightarrow x^2-11x=-(a^2+24)\)
Khi đó \((*)\Leftrightarrow a-(a^2+24)=0\)
\(\Leftrightarrow a^2-a+24=0\Leftrightarrow (a-\frac{1}{2})^2+\frac{95}{4}=0\) (vô lý)
Vậy pt vô nghiệm.
Câu b)
ĐKXĐ:.........
\(\sqrt{7x-13}-\sqrt{3x-9}=\sqrt{5x-27}\)
\(\Rightarrow (\sqrt{7x-13}-\sqrt{3x-9})^2=5x-27\)
\(\Leftrightarrow 10x-22-2\sqrt{(7x-13)(3x-9)}=5x-27\)
\(\Leftrightarrow 5(x+1)=2\sqrt{(7x-13)(3x-9)}\)
\(\Rightarrow 25(x+1)^2=4(7x-13)(3x-9)\)
\(\Leftrightarrow 25(x^2+2x+1)=84x^2-408x+468\)
\(\Leftrightarrow 59x^2-458x+443=0\)
\(\Rightarrow x=\frac{229\pm 8\sqrt{411}}{59}\) . Kết hợp với ĐKXĐ suy ra \(x=\frac{229+8\sqrt{411}}{59}\)
\(\sqrt{1+x}+\sqrt{8-x}+\sqrt{\left(1+x\right)\left(8-x\right)}=a\) (1)
Điều kiện :
\(\begin{cases}1+x\ge0\\8-x\ge0\\\left(1+x\right)\left(8-x\right)\ge0\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}x\ge-1\\x\le8\\-1\le x\le8\end{cases}\) \(\Leftrightarrow\) \(x\in\left[-1;8\right]\) : = (*)
Đặt \(t=\sqrt{1+x}+\sqrt{8-x}\) với điều kiện \(x\in\) (*) ta có
\(\begin{cases}t\ge0\\t^2=1+x+8-x+2\sqrt{\left(1+x\right)\left(8-x\right)}\end{cases}\)
\(\Rightarrow\) \(\begin{cases}t\ge0\\9\le t^2\le9+\left(1+x+8-x\right)=18\end{cases}\)
\(\Rightarrow\) \(t\in\left[3;3\sqrt{2}\right]\) : = (*1)
Ngoài ra, từ đó còn có \(\sqrt{\left(1+x\right)\left(8-x\right)}=\frac{t^2-9}{2}\)
Phương trình (1) trở thành
\(f\left(t\right)=\frac{1}{2}\left(t^2+2t-9\right)=a\) (2)
1) Với a=3 ta có :
(2) \(\Leftrightarrow\) \(t^2+2t-15=0\) \(\Leftrightarrow\) \(\begin{cases}t=3\\t=-5\end{cases}\)
Trong 2 nghiệm trên, chỉ có t =3 thuộc (*1) nên với a=3 ta có
(1) \(\Leftrightarrow\) \(\sqrt{\left(1+x\right)\left(8-x\right)}=\frac{3^2-9}{2}=0\) \(\Leftrightarrow\) \(\begin{cases}x=-1\\x=8\end{cases}\)
Hai nghiệm này cùng thuộc (*) như vậy khi a=3, phương trình đã cho có 2 nghiệm x=-1 và x=8
2)Nhận thấy phương trình (1) có nghiệm \(x\in\) (*) khi và chỉ khi phương trình (2)
có nghiệm t\(\in\) (*1) hay là khi và chỉ khi đường thẳng y=a (vuông góc với y'Oy) có điểm ching với phần đồ thị hàm số y=f(t) vẽ trên ( *1).
Lập bảng biến thiên của hàm số y = f(t) trên (*1) với nhận xét rằng f'(t) = t+1>0, mọi t \(x\in\) (*)
t | \(-\infty\) 3 \(3\sqrt{2}\) \(+\infty\) |
f'(t) | + |
f (t) | \(\frac{9+6\sqrt{2}}{2}\) 3 |
Từ nhận xét trên và từ bảng biến thiên, ta được \(3\le a\le\frac{9+6\sqrt{2}}{2}\) là giá trị cần tìm
Vì \(\left(\sqrt{3+\sqrt{8}}\right)^x.\left(\sqrt{3-\sqrt{8}}\right)^x=1\)
nên đặt \(t=\left(\sqrt{3+\sqrt{8}}\right)^x>0\)
\(\Rightarrow\left(\sqrt{3-\sqrt{8}}\right)^x=\frac{1}{t}\)
Bất phương trình trở thành : \(t+\frac{1}{t}\le34\Leftrightarrow t^2-34t+1\le0\)
\(\Leftrightarrow17-6\sqrt{8}\le t\le17+6\sqrt{8}\)
\(\Leftrightarrow\left(\sqrt{3+\sqrt{8}}\right)^{-4}\le\left(\sqrt{3+\sqrt{8}}\right)^x\le\left(\sqrt{3+\sqrt{8}}\right)^4\)
Vậy tập nghiệm của bất phương trình là \(S=\left[-4;4\right]\)