\(\frac{1}{x-2}\)\(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2020

1, \(\frac{3x-4}{x-2}>1\\ \frac{3\left(x-2\right)}{x-2}+\frac{2}{x-2}>1\\ 3+\frac{2}{x-2}>1\\ \frac{2}{x-2}>-2\\ \frac{1}{x-2}>-1\)

\(x-2< -1\\ x< 1\)

NV
4 tháng 3 2020

a/

\(\frac{3x-4}{x-2}-1>0\Leftrightarrow\frac{2x-2}{x-2}>0\Rightarrow\left[{}\begin{matrix}x>2\\x< 1\end{matrix}\right.\)

b/

\(\frac{2x-5}{2-x}+1\le0\Rightarrow\frac{x-3}{2-x}\le0\Rightarrow\left[{}\begin{matrix}x\ge3\\x< 2\end{matrix}\right.\)

c/

\(\frac{x^2+x-3}{x^2-4}-1\le0\Rightarrow\frac{x+1}{x^2-4}\le0\Rightarrow\frac{x+1}{\left(x-2\right)\left(x+2\right)}\le0\Rightarrow\left[{}\begin{matrix}x< -2\\-1\le x< 2\end{matrix}\right.\)

d/

\(\frac{4x^2-8x+6+x^2-x-6}{2\left(x^2-x-6\right)}>0\Rightarrow\frac{x\left(5x-9\right)}{2\left(x+2\right)\left(x-3\right)}>0\Rightarrow\left[{}\begin{matrix}x>3\\0< x< \frac{9}{5}\\x< -2\end{matrix}\right.\)

e/

\(\frac{x^2+3x+2}{2x+3}-\frac{2x-5}{4}\ge0\Rightarrow\frac{4x^2+12x+8-\left(2x-5\right)\left(2x+3\right)}{4\left(2x+3\right)}\ge0\)

\(\Rightarrow\frac{28x+23}{4\left(2x+3\right)}\ge0\Rightarrow\left[{}\begin{matrix}x\ge-\frac{23}{28}\\x< -\frac{3}{2}\end{matrix}\right.\)

4 tháng 3 2020

mình sửa lại bài 3 ý a, \(\left|5x-3\right|< 2\)

NV
26 tháng 2 2020

a/ \(\frac{-25}{\left(-x+2\right)\left(-3x-2\right)}< 0\Leftrightarrow\left[{}\begin{matrix}x< -\frac{2}{3}\\x>2\end{matrix}\right.\)

b/ \(\frac{1}{x-1}-\frac{2}{2x-1}>0\Leftrightarrow\frac{1}{\left(x-1\right)\left(2x-1\right)}>0\Rightarrow\left[{}\begin{matrix}x>1\\x< \frac{1}{2}\end{matrix}\right.\)

c/ \(\frac{2}{3-x}+\frac{2}{x-3}\le0\Leftrightarrow0\le0\) (luôn đúng)

Vậy nghiệm của BPT là \(R\backslash\left\{3\right\}\)

d/ \(1-\frac{x-1}{x^2-3x+2}\ge\Leftrightarrow\frac{x^2-4x+3}{\left(x-1\right)\left(x-2\right)}\ge0\Leftrightarrow\frac{\left(x-1\right)\left(x-3\right)}{\left(x-1\right)\left(x-2\right)}\ge0\)

\(\Rightarrow\left[{}\begin{matrix}x\ge3\\1< x< 2\\x< 1\end{matrix}\right.\)

e/ \(\frac{x+1}{x^2+x+2}-\frac{1}{x+1}>0\Leftrightarrow\frac{x-1}{\left(x+1\right)\left(x^2+x+2\right)}>0\Rightarrow\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\)