Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a)\(\left(2x+5\right)\left(6y-7\right)=13\)
=>2x+5 và 6y-7 thuộc Ư(13)={13;1;-1;-13}
- Với 2x+5=13 =>x=4 =>6y-7=1 =>y=4/3 (loại)
- Với 2x+5=-13 =>x=-9 =>6y-7=-1 =>y=1 (tm)
- Với 2x+5=-1 =>x=-3 =>6y-7=-13 =>y=-1 (tm)
- Với 2x+5=1 =>x=-2 =>6y-7=13=13 =>y=10/3 (loại)
Vậy các cặp số nguyên (x;y) thỏa mãn là (-9,1);(-3;-1)
2)xy+x+y=0
=>xy+x+y+1=1
=>(xy+x)+(y+1)=1
=>x(y+1)+(y+1)=1
=>(x+1)(y+1)=1
Sau đó bn =>x+1 và y+1 thuộc Ư(1) rồi tính như trên nhé
c)xy-x-y+1=0
=>(x-1)y-x+1=0
=>(x-1)y-x-0+1=0
=>(x-1)(y-1)=0
- Với x-1=0 =>x=1 thì mọi y thuộc Z đều thỏa mãn (vì đề chỉ cho thuộc Z)
- Với y-1=0 =>y=1 thì mọi x thuộc Z đều thỏa mãn
d và e bn phân tích ra tính tương tự
Bài 2:
a)\(A=\frac{x+5}{x+1}=\frac{x+1+4}{x+1}=\frac{x+1}{x+1}+\frac{4}{x+1}=1+\frac{4}{x+1}\in Z\)
=>4 chia hết x+1
=>x+1 thuộc Ư(4)={1;-1;2;-2;4;-4}
Bạn thay x+1={1;-1;2;-2;4;-4} vào rồi tính tiếp
b)\(=\frac{2x+4}{x+3}=\frac{2\left(x+3\right)-2}{x+3}=\frac{2\left(x+3\right)}{x+3}-\frac{1}{x+3}=2-\frac{1}{x+3}\in Z\)
=>2 chia hết x+3
=>x+3 thuộc Ư(2)={1;-1;2-2} tự làm nhé
c)\(C=\frac{4x+4}{2x+4}=\frac{2\left(2x+4\right)-4}{2x+4}=\frac{2\left(2x+4\right)}{2x+4}-\frac{4}{2x+4}=2-\frac{4}{2x+4}\in Z\)
=>4 chia hết 2x+4
=>2x+4 thuộc Ư(4)={1;-1;2;-2;4;-4} tự tính tiếp nhé
a, Thay x = -1 và y = \(\frac{1}{2}\) vào biểu thức trên ta được:
2[(\(\frac{1}{2}\))2 - 4 . (-1)] = 2(\(\frac{1}{4}\) + 4) = \(\frac{1}{2}\) + 8 = \(\frac{17}{2}\)
Vậy 2(y2 - 4x) = \(\frac{17}{2}\) nếu x = -1, y = \(\frac{1}{2}\)
b, Thay x = -\(\frac{1}{2}\) vào biểu thức trên ta được:
\(\frac{2\cdot\left(-\frac{1}{2}\right)^2+5\cdot\left(-\frac{1}{2}\right)-3}{3\cdot\left(-\frac{1}{2}\right)-1}\) = \(\frac{2\cdot\frac{1}{4}+\frac{-5}{2}-3}{\frac{-3}{2}-1}\) = \(\frac{-5}{\frac{-5}{2}}\) = 2
Vậy \(\frac{2x^2+5x-3}{3x-1}\) = 2 nếu x = \(\frac{-1}{2}\)
c, Thay x = \(\frac{-1}{2}\), y = -1 vào biểu thức trên ta được:
\(\frac{2\cdot\left(-\frac{1}{2}\right)^2-3\cdot\left(-1\right)^2-0,5\cdot\left(\frac{-1}{2}\right)\cdot\left(-1\right)}{3\left(\frac{-1}{2}-1\right)}\) = \(\frac{2\cdot\frac{1}{4}-3-\frac{1}{4}}{3\cdot\frac{-3}{2}}\) = \(\frac{\frac{-11}{4}}{\frac{-9}{2}}\) = \(\frac{11}{18}\)
Vậy \(\frac{2x^2-3y^2-0,5xy}{3\left(x+y\right)}\) = \(\frac{11}{18}\) tại x = \(\frac{-1}{2}\), y = -1
Chúc bn học tốt!
a) Thay x=-1 và \(y=\frac{1}{2}\) vào biểu thức \(2\left(y^2-4x\right)\), ta được:
\(2\cdot\left[\left(\frac{1}{2}\right)^2-4\cdot\left(-1\right)\right]\)
\(=2\cdot\left(\frac{1}{4}+4\right)\)
\(=2\cdot\frac{17}{4}=\frac{17}{2}\)
Vậy: \(\frac{17}{2}\) là giá trị của biểu thức \(2\left(y^2-4x\right)\) tại x=-1 và \(y=\frac{1}{2}\)
b) Thay \(x=\frac{-1}{2}\) vào biểu thức \(\frac{2x^2+5x-3}{3x-1}\), ta được:
\(\frac{2\cdot\left(\frac{-1}{2}\right)^2+5\cdot\frac{-1}{2}-3}{3\cdot\frac{-1}{2}-1}\)
\(=\frac{2\cdot\frac{1}{4}+\frac{-5}{2}-3}{\frac{-3}{2}-\frac{2}{2}}\)
\(=\frac{\frac{1}{2}+\frac{-5}{2}-\frac{6}{2}}{-\frac{5}{2}}\)
\(=-5:\frac{-5}{2}\)
\(=-5\cdot\frac{2}{-5}=2\)
Vậy: 2 là giá trị của biểu thức \(\frac{2x^2+5x-3}{3x-1}\) tại \(x=\frac{-1}{2}\)
c) Thay \(x=\frac{-1}{2}\) và y=-1 vào biểu thức \(\frac{2x^2-3y^2-0,5xy}{3\left(x+y\right)}\), ta được:
\(\frac{2\cdot\left(-\frac{1}{2}\right)^2-3\cdot\left(-1\right)^2-0,5\cdot\frac{-1}{2}\cdot\left(-1\right)}{3\left(\frac{-1}{2}-1\right)}\)
\(=\frac{2\cdot\frac{1}{4}-3-\frac{1}{4}}{3\cdot\frac{-3}{2}}\)
\(=\frac{\frac{2}{4}-\frac{12}{4}-\frac{1}{4}}{\frac{-9}{2}}\)
\(=-\frac{11}{4}\cdot\frac{2}{-9}\)
\(=\frac{11}{18}\)
Vậy: \(\frac{11}{18}\) là giá trị của biểu thức \(\frac{2x^2-3y^2-0,5xy}{3\left(x+y\right)}\) tại \(x=\frac{-1}{2}\) và y=-1
a) Thay x = 1 vào biểu thức x2-5x, ta được:
12-5.1 = -4
Vậy -4 là giá trị của thức x2-5x tại x = 1
Thay x = -1 vào biểu thức x2-5x, ta được:
(-1)2-5.(-1) = 6
Vậy 6 là giá trị của biểu thức x2-5x tại x=-1
Thay x = \(\dfrac{1}{2}\) vào biểu thức x2-5x, ta được:
(\(\dfrac{1}{2}\))2-5.\(\dfrac{1}{2}\) = -\(\dfrac{9}{4}\)
Vậy -\(\dfrac{9}{4}\) là giá trị của biểu thức x2-5x tại x =\(\dfrac{1}{2}\)
b) Thay x = -3, y = -5 vào biểu thức 3x2-xy, ta được:
3.(-3)2 - (-3).(-5) = 12
Vậy 12 là giá trị của biểu thức 3x2-xy tại x = -3, y = -5
c) Thay x = 1, y = -3 vào biểu thức 5-xy3, ta được:
5-1.(-3)3 = 32
Vậy 32 là giá trị của biểu thức 5-xy3 tại x = 1, y = -3
Bài 2:
TH1: \(x\le-\frac{5}{2}\)
<=>\(-\left(x+\frac{5}{2}\right)+\frac{2}{5}-x=0\)<=>\(-x-\frac{5}{2}+\frac{2}{5}-x=0\)<=>\(-\frac{21}{10}-2x=0\)
<=>\(-2x=\frac{21}{10}\)<=>\(x=\frac{-21}{20}\)(loại)
TH2: \(-\frac{5}{2}< x\le\frac{2}{5}\)
<=>\(x+\frac{5}{2}+\frac{2}{5}-x=0\)<=>\(\frac{29}{10}=0\)(loại)
TH3: \(x>\frac{2}{5}\)
<=>\(x+\frac{5}{2}+x-\frac{2}{5}=0\)<=>\(2x+\frac{21}{10}=0\)<=>\(2x=-\frac{21}{10}\)<=>\(x=-\frac{21}{20}\)(loại)
Vậy không có số x thỏa mãn đề bài
Bài 1:
Vì \(\left(x-2\right)^2\ge0\) nên\(\left(x-2\right)^2\le0\) khi \(\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Bài 3:
Đặt \(\frac{x}{15}=\frac{y}{9}=k\Rightarrow\hept{\begin{cases}x=15k\\y=9k\end{cases}}\)
Theo đề bài: xy=15 <=> 15k.9k=135k2=15 <=> k2=1/9 <=> k=-1/3 hoặc k=1/3
+) \(k=-\frac{1}{3}\Rightarrow\hept{\begin{cases}x=\left(-\frac{1}{3}\right).15=-5\\y=\left(-\frac{1}{3}\right).9=-3\end{cases}}\)
+) \(k=\frac{1}{3}\Rightarrow\hept{\begin{cases}x=\frac{1}{3}.15=5\\y=\frac{1}{3}.9=3\end{cases}}\)
Vậy ...........
thay x và y vào BT ta có :5/2 .4.5 +0,5.4.5=60 tich nhe