Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Từ \(x+y-z=-1\Rightarrow z-x-y=1\)
Ta có các biến đổi sau:
\(x+yz=x(z-x-y)+yz=x(z-x)+y(z-x)=(x+y)(z-x)\)
\(=(x+y)(y+1)\)
\(y+zx=y(z-x-y)+zx=y(z-y)+x(z-y)=(y+x)(z-y)\)
\(=(y+x)(x+1)\)
\(z+xy=z(z-x-y)+xy=(z-x)(z-y)=(x+1)(y+1)\)
Khi đó:\(P=\frac{x^3y^3}{(x+y)^2(x+1)^3(y+1)^3}(*)\)
Áp dụng BĐT Cauchy:
\((x+y)^2\geq 4xy\)
\(x+1=\frac{x}{2}+\frac{x}{2}+1\geq 3\sqrt[3]{\frac{x^2}{4}}\Rightarrow (x+1)^3\geq \frac{27x^2}{4}\)
\(y+1\geq 3\sqrt[3]{\frac{y^2}{4}}\Rightarrow (y+1)^3\geq \frac{27y^2}{4}\) (tương tự ở trên)
\(\Rightarrow (x+y)^2(x+1)^3(y+1)^3\geq \frac{729}{4}x^3y^3(**)\)
Từ \((*); (**)\Rightarrow P\leq \frac{x^3y^3}{\frac{729}{4}x^3y^3}=\frac{4}{279}\Rightarrow P_{\max}=\frac{4}{729}\)
Đẳng thức xảy ra khi \(x=y=2; z=5\)
\(\left(x^3+y^3\right)\left(x+y\right)=xy\left(1-x\right)\left(1-y\right)\Leftrightarrow\left(\frac{x^2}{y}+\frac{y^2}{x}\right)\left(x+y\right)=\left(1-x\right)\left(1-y\right)\left(1\right)\)
Ta có : \(\left(\frac{x^2}{y}+\frac{y^2}{x}\right)\left(x+y\right)\ge4xy\)
và \(\left(1-x\right)\left(1-y\right)=1-\left(x+y\right)+xy\le1-2\sqrt{xy}+xy\)
\(\Rightarrow1-2\sqrt{xy}+xy\ge4xy\Leftrightarrow0\) <\(xy\le\frac{1}{9}\)
Dễ chứng minh : \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\le\frac{1}{1+xy};\left(x,y\in\left(0;1\right)\right)\)
\(\frac{1}{\sqrt{1+x^2}}+\frac{1}{\sqrt{1+y^2}}\le\sqrt{2\left(\frac{1}{1+x^2}+\frac{1}{1+y^2}\right)}\le\sqrt{2\left(\frac{2}{1+xy}\right)}=\frac{2}{\sqrt{1+xy}}\)
\(3xy-\left(x^2+y^2\right)=xy-\left(x-y\right)^2\le xy\)
\(\Rightarrow P\le\frac{2}{\sqrt{1+xy}}+xy=\frac{2}{\sqrt{1+t}}+t\), \(\left(t=xy\right)\), (0<\(t\le\frac{1}{9}\)
Xét hàm số :
\(f\left(t\right)=\frac{2}{\sqrt{t+1}}+t\) , (0<\(t\le\frac{1}{9}\)
\(P=3x^2+3z^2+10y^2+10t^2+8xy+8zt+4zx+2yz+2xt\)
\(P\le5x^2+5z^2+10y^2+10t^2+8xy+8zt+2yz+2xt\)
\(P\le10+5y^2+5t^2+8xy+8zt+2yz+2xt\)
\(\left\{{}\begin{matrix}8xy=\left(2+2\sqrt{5}\right)\left[2.x.\frac{\left(\sqrt{5}-1\right)}{2}y\right]\le\left(2+2\sqrt{5}\right)\left[x^2+\left(\frac{3-\sqrt{5}}{2}\right)y^2\right]\\8zt\le\left(2+2\sqrt{5}\right)\left[z^2+\left(\frac{3-\sqrt{5}}{2}\right)t^2\right]\\2yz\le\left(\frac{\sqrt{5}+1}{2}\right)\left[z^2+\left(\frac{3-\sqrt{5}}{2}\right)y^2\right]\\2xt\le\left(\frac{\sqrt{5}+1}{2}\right)\left(x^2+\left(\frac{3-\sqrt{5}}{2}\right)t^2\right)\end{matrix}\right.\)
\(\Rightarrow P\le10+\frac{5}{2}\left(\sqrt{5}+1\right)\left(x^2+y^2+z^2+t^2\right)\le15+5\sqrt{5}\)
Dấu "=" xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}x=z=\sqrt{\frac{5-\sqrt{5}}{10}}\\y=t=\sqrt{\frac{5+\sqrt{5}}{10}}\end{matrix}\right.\)