\(x,y,z\ge1\)và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2019

Áp dụng cô si

\(\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{ab}}\\\frac{1}{c}+\frac{1}{b}\ge2\sqrt{\frac{1}{cb}}\\\frac{1}{a}+\frac{1}{c}\ge2\sqrt{\frac{1}{ac}}\end{cases}}\)\(\Rightarrow\frac{1}{c}+\frac{1}{b}+\frac{1}{a}\ge\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ac}}\)

\("="\Leftrightarrow a=b=c=0\)

\(\hept{\begin{cases}\sqrt{x}\le\frac{x+1}{2}\\\sqrt{y-1}\le\frac{y-1+1}{2}\\\sqrt{z-2}\le\frac{z-2+1}{2}\end{cases}}\)\(\Rightarrow\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}\le\frac{x+1+y-1+1+z-2+1}{2}\)

\(\Leftrightarrow\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}\le\frac{x+y+z}{2}\)

\("="\Leftrightarrow\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}\)

18 tháng 10 2020

Sửa ĐK của c) : a, b, c > 0

Áp dụng bất đẳng thức Cauchy ta có :

\(\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{ab}}=\frac{2}{\sqrt{ab}}\)

\(\frac{1}{b}+\frac{1}{c}\ge2\sqrt{\frac{1}{bc}}=\frac{2}{\sqrt{bc}}\)

\(\frac{1}{c}+\frac{1}{a}\ge2\sqrt{\frac{1}{ca}}=\frac{2}{\sqrt{ca}}\)

Cộng các vế tương ứng

=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\ge\frac{2}{\sqrt{ab}}+\frac{2}{\sqrt{bc}}+\frac{2}{\sqrt{ca}}\)

=> \(2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge2\left(\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\right)\)

=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\)

=> đpcm

Đẳng thức xảy ra khi a = b = c

2 tháng 10 2019

Áp dụng BĐT Mincopxki và AM - GM ta có :

\(P=\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\)

\(\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\)

\(\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{9}{x+y+z}\right)^2}\)

\(\ge\sqrt{\left(x+y+z\right)^2+\frac{81}{\left(x+y+z\right)^2}}\)

\(\ge\sqrt{\left(x+y+z\right)^2+\frac{1}{\left(x+y+z\right)^2}+\frac{80}{\left(x+y+z\right)^2}}\)

\(\ge\sqrt{\sqrt[2]{\left(x+y+z\right)^2.\frac{1}{\left(x+y+z\right)^2}+80}}\)

\(\ge\sqrt{2+80}=\sqrt{82}\)

Đẳng thức xảy ra khi \(x=y=z=\frac{1}{3}\)

Chúc bạn học tốt !!!

2 tháng 12 2017

\(\Leftrightarrow\frac{4}{x\left(y+z\right)}\ge1\)

mà \(x\left(y+z\right)\le\frac{\left(x+y+z\right)^2}{4}\)

\(\Rightarrow\frac{4}{x\left(y+z\right)}\ge\frac{4}{\frac{\left(x+y+z\right)^2}{4}}=\frac{16}{\left(x+y+z\right)^2}=\frac{16}{16}=1\left(đpcm\right)\)

2 tháng 12 2017

Tuyển ơi, m giải cho ai thế

16 tháng 1 2020

\(VT\ge\frac{9}{\Sigma_{cyc}\sqrt{xy+x+y}}\ge\frac{9}{\sqrt{\left(1+1+1\right)\left(2x+2y+2z+xy+yz+zx\right)}}\ge\frac{9}{\sqrt{3\left[6+\frac{\left(x+y+z\right)^2}{3}\right]}}=\sqrt{3}\)

15 tháng 8 2017

Bài 2:Áp dụng BĐT AM-GM ta có:

\(\frac{1}{x}+\frac{1}{y}\ge2\sqrt{\frac{1}{xy}}\)

\(\frac{1}{y}+\frac{1}{z}\ge2\sqrt{\frac{1}{yz}}\)

\(\frac{1}{x}+\frac{1}{z}\ge2\sqrt{\frac{1}{xz}}\)

CỘng theo vế 3 BĐT trên có: 

\(2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge2\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\right)\)

Khi x=y=z

15 tháng 8 2017

Ta có: \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}}\)

\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}\)

\(\frac{1}{\sqrt{3}}>\frac{1}{\sqrt{100}}\)

\(..........................\)

\(\frac{1}{\sqrt{99}}>\frac{1}{\sqrt{100}}\)

\(\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\)

Cộng theo vế ta có:

\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}>\frac{1}{10}+\frac{1}{10}+...+\frac{1}{10}=\frac{100}{10}=10\)

30 tháng 8 2017

Đầu tiên CM BDT :

\(1+x^3+y^3\ge xy"x+y+z"\)

\(\Leftrightarrow x^3+y^3\ge xy"x+y"\)" do \(xyz=1\)"

\(\Leftrightarrow"x+y""x^2+y^2-xy"-xy"x+y"\ge0\)

\(\Leftrightarrow"x+y""x-y"^2\ge0\)

BDT luôn đúng theo gt 

\(\Rightarrow\sqrt{"1+x^3+y^3"}\ge\sqrt{xy"x+y+z"}\)

\(\Rightarrow\sqrt{\frac{"1+x^3+y^3}{xy}}\ge\sqrt{\frac{"x+y+z"}{xz}}\)

Tương tự

\(\Rightarrow\sqrt{\frac{"1+z^3+y^3}{zy}}\ge\sqrt{\frac{"x+y+z"}{zy}}\)

\(\sqrt{\frac{"1+x^3+y^3"}{xz}}\ge\sqrt{\frac{"x+y+z"}{xz}}\)

\(\Rightarrow VT\ge\sqrt{"x+y+z"}.\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{zx}}\)

AD BDT Cauchy cho các số > 0

\(x+y+z\ge3\)\(\sqrt[3]{xyz}=3\)

\(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{zx}}\ge\frac{3}{\sqrt[3]{xyz}}=3\)

\(\Rightarrow VT\ge\sqrt{3}.3=3\sqrt{3}=VP\) 

\(\Rightarrow VT\ge VP\)

\(\Rightarrow DPCM\)

Vậy Dấu \(= khi x=y=z=1\)

P/s: Thay dấu noặc kép thành ngọc đơn nha, Ko chắc đâu

19 tháng 8 2015

Bạn thiếu giả thiết \(x,y,z>0\) nhé.

Theo giả thiết \(xyz=xy+yz+zx.\)  Từ đó ta có\(\sqrt{x+yz}=\sqrt{\frac{x^2+xyz}{x}}=\sqrt{\frac{x^2+xy+yz+zx}{x}}=\sqrt{\frac{\left(x+y\right)\left(x+z\right)}{x}}.\)

Theo bất đẳng thức Bunhiacốpxki, \(\sqrt{\left(x+y\right)\left(x+z\right)}\ge x+\sqrt{yz}.\)  Do đó

\(\sqrt{x+yz}=\sqrt{\frac{\left(x+y\right)\left(x+z\right)}{x}}\ge\frac{x+\sqrt{yz}}{\sqrt{x}}=\sqrt{x}+\sqrt{\frac{yz}{x}}\), hay ta có \(\sqrt{x+yz}\ge\sqrt{x}+\sqrt{\frac{yz}{x}}.\) 

Tương tự ta có hai bất đẳng thức nữa\(\sqrt{y+zx}\ge\sqrt{y}+\sqrt{\frac{xz}{y}},\sqrt{z+xy}\ge\sqrt{z}+\sqrt{\frac{xy}{z}}\).  Cộng cả ba bất đẳng thức lại cho ta

\(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge\sqrt{x}+\sqrt{\frac{yz}{x}}+\sqrt{y}+\sqrt{\frac{zx}{y}}+\sqrt{z}+\sqrt{\frac{xy}{z}}\)

\(\Leftrightarrow\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge\sqrt{x}+\sqrt{y}+\sqrt{z}+\left(\sqrt{\frac{yz}{x}}+\sqrt{\frac{zx}{y}}+\sqrt{\frac{xy}{z}}\right)\)

\(\Leftrightarrow\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge\sqrt{x}+\sqrt{y}+\sqrt{z}+\frac{xy+yz+zx}{\sqrt{xyz}}\)

\(\Leftrightarrow\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge\sqrt{x}+\sqrt{y}+\sqrt{z}+\sqrt{xyz}.\)    (ĐPCM)

 

18 tháng 8 2015

hừm,, dài quá nên hơi " ngán" hi hi