Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Lấy 1 điểm K trên AC sao cho ∠ABK = ∠CBD;
- Từ ∠ABK + ∠CBK = ∠ABC = ∠CBD + ∠ABD, suy ra ∠CBK = ∠ABD.
- Do vậy tam giác △ABK đồng dạng với tam giác △DBC, và tương tự có △ABD đồng dạng với △KBC.
- Suy ra: AK/AB = CD/BD, và CK/BC = DA/BD;
- Từ đó AK·BD = AB·CD, và CK·BD = BC·DA;
- Cộng các vế của 2 đẳng thức trên: AK·BD + CK·BD = AB·CD + BC·DA;
- Hay: (AK+CK)·BD = AB·CD + BC·DA;
- Mà AK+CK = AC, nên AC·BD = AB·CD + BC·DA; (điều phải chứng minh)
Sử dụng tính chất tam giác đồng dạng và bất đẳng thức tam giác.
Dựng điểm E sao cho tam giác BCD đồng dạng với tam giác BEA. Khi đó, theo tính chất của tam giác đồng dạng, ta có
\(\frac{BA}{EA}=\frac{BD}{CD}\)
Suy ra \(BA.CD=EA.BD\left(1\right)\)
Mặt khác, tam giác EBC và tam giác ABD cũng đồng dạng do có
\(\frac{BA}{BD}=\frac{BE}{BC}\) và góc EBC= góc ABD
Từ đó
\(\frac{EC}{BC}=\frac{AD}{BD}\)
Suy ra
\(AD.BC=EC.BD\left(2\right)\)
Cộng (1) và (2) ta suy ra
\(AB.CD+AD.BC=BD.\left(EA+EC\right)\)
Áp dụng bất đẳng thức tam giác ta suy ra \(AB.CD+AD>BC\ge AC>BD\)
Dấu bằng xảy ra khi và chỉ khi tứ giác nội tiếp trong một đường tròn và trở thành định lý Ptoleme.
Lớp 8 đã học tứ giác nội tiếp đâu mà bạn đã kết luận như vậy rồi.Bạn làm theo ý tưởng trên Wikipedia cũng phải chỉ rõ cách dựng điểm E ; kết luận dấu = xảy ra khi E,C,A thẳng hàng rồi từ đó suy ra tổng 2 góc đối của tứ giác bằng 1800
Đáp án:
nhìn dưới :3
Giải thích các bước giải:
Dựng tam giác vuông DBM cân tại B sao cho D và A nằm trên 2 nửa mặt phẳng khác nhau bờ BC ,,, suy ra tam giác ADC đồng dạng vs tam giác BMC theo c-g-c
suy ra góc BCM = góc ACD ,,, suy ra góc DCM = góc ACB và CABC=CDCMCABC=CDCM ,,,, Do đó tam giác ABC đồng dạng vs tam giác DMC theo g-c-g
Rút tỉ cạnh số ta có q.e.d
Cho mình hỏi cái câu cuối nghĩa là gì vậy