Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(F=\left(\dfrac{2\sqrt{x}}{2\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right)\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{3x}{x-2\sqrt{x}+1}\right)\)
\(=\dfrac{2x-2\sqrt{x}+1}{\sqrt{x}\left(2\sqrt{x}-1\right)}\cdot\dfrac{x-1+3x}{\left(\sqrt{x}-1\right)^2}\)
\(=\dfrac{2x-2\sqrt{x}+1}{\sqrt{x}\left(2\sqrt{x}-1\right)}\cdot\dfrac{4x-1}{\left(\sqrt{x}-1\right)^2}\)
\(=\dfrac{\left(2x-2\sqrt{x}+1\right)\left(2\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)^2}\)
Câu a đã làm: F=(2√x/2√x-1 - 1/√x) ( √x+1/√x-1 + 3x/x-2√x+1) với x >0, x khác 1, x khác 1/4 a) rút gọn F - Hoc24
\(b,F=2\Leftrightarrow\dfrac{\left(2\sqrt{x}+1\right)\left(2x-2\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)^2}=2\\ \Leftrightarrow2\sqrt{x}\left(x-2\sqrt{x}+1\right)=2x\sqrt{x}-4x+2\sqrt{x}+2x-2\sqrt{x}+1\\ \Leftrightarrow2x\sqrt{x}-4x+2\sqrt{x}=2x\sqrt{x}-2x+1\\ \Leftrightarrow2x-2\sqrt{x}+1=0\\ \Leftrightarrow2\left(x-\sqrt{x}+\dfrac{1}{4}\right)+\dfrac{1}{2}=0\\ \Leftrightarrow2\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{1}{2}=0\\ \Leftrightarrow x\in\varnothing\)
A= (2/x-√x - 1/√x-1) : x-4/x√x+√x - 2x với x>0, x khác 1, x khác 4 a) rút gọn A b) tìm x để A > -1/2
a: Ta có: \(A=\left(\dfrac{2}{x-\sqrt{x}}-\dfrac{1}{\sqrt{x}-1}\right):\dfrac{x-4}{x\sqrt{x}+\sqrt{x}-2x}\)
\(=\dfrac{2-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}\left(x-2\sqrt{x}+1\right)}{x-4}\)
\(=\dfrac{-\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}\)
\(=\dfrac{-\sqrt{x}+1}{\sqrt{x}+2}\)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
\(F=\left(\dfrac{2\sqrt{x}}{2\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right)\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{3x}{x-2\sqrt{x}+1}\right)\left(x>0;x\ne1;x\ne\dfrac{1}{4}\right)\\ F=\dfrac{2x-2\sqrt{x}+1}{\sqrt{x}\left(2\sqrt{x}-1\right)}\cdot\dfrac{x-1+3x}{\left(\sqrt{x}-1\right)^2}\\ F=\dfrac{2x-2\sqrt{x}+1}{\sqrt{x}\left(2\sqrt{x}-1\right)}\cdot\dfrac{\left(2\sqrt{x}-1\right)\left(2\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}\\ F=\dfrac{\left(2\sqrt{x}+1\right)\left(2x-2\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)^2}\)
a: Ta có: \(F=\left(\dfrac{2\sqrt{x}}{2\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right)\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{3x}{x-2\sqrt{x}+1}\right)\)
\(=\dfrac{2x-2\sqrt{x}+1}{\sqrt{x}\left(2\sqrt{x}-1\right)}\cdot\dfrac{4x-1}{\left(\sqrt{x}-1\right)^2}\)
\(=\dfrac{\left(2x-2\sqrt{x}+1\right)\left(2\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)^2}\)