K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2015

Do vai trò bình đẳng của x, y, z trong phương trình, trước hết ta xét x ≤ y ≤ z. 
Vì x, y, z nguyên dương nên xyz ≠ 0, do x ≤ y ≤ z => xyz = x + y + z ≤ 3z => xy ≤ 3 
=> xy thuộc {1 ; 2 ; 3}. 
Nếu xy = 1 => x = y = 1, thay vào (2) ta có : 2 + z = z, vô lí. 
Nếu xy = 2, do x ≤ y nên x = 1 và y = 2, thay vào (2), => z = 3. 
Nếu xy = 3, do x ≤ y nên x = 1 và y = 3, thay vào (2), => z = 2. 
Vậy nghiệm nguyên dương của phương trình (2) là các hoán vị của (1 ; 2 ; 3).

11 tháng 11 2019

đề có thiếu ko

11 tháng 11 2019

có ihiihihih

9 tháng 5 2019

Bạn tham khảo tại đây nhé:

Câu hỏi của giang ho dai ca - Toán lớp 7 - Học toán với OnlineMath

3 tháng 12 2015

Do x,y,z có vai trò như nhau nên ta giả sử 0<x≤y≤z

Khi đó ta có xyz=x+y+z≤3z

⇒xy≤3

mà x,y là các số nguyên dương nên xyϵ{1;2;3}  

Ta xét các trường hợp

+) TH1: xy=1 ⇒x=1;y=1⇒2+z=z, vô lí

+) TH2: xy=2⇒x=1;y=2 (do x≤y) ⇒3+z=2z⇔z=3

+) TH3: xy=3⇒x=1;y=3⇒4+z=3z⇔z=2

Nên ta có các cặp số (x;y;z) thỏa mãn đề bài là các hoán vị của (1;2;3)

Khi đó x+y+z=6

3 tháng 12 2015

x=300

y=20

z=1

vì x+y+z=xyz

=>300+20+1=321