Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\frac{-5}{9}.\left(\frac{3}{10}-\frac{2}{5}\right)\)
\(=\frac{-5}{9}.\left(\frac{3}{10}-\frac{4}{10}\right)\)
\(=\frac{-5}{9}.\frac{-1}{10}\)
\(=\frac{5}{90}\)
\(=\frac{1}{18}\)
b,\(\frac{2}{3}+\frac{-1}{3}+\frac{7}{15}\)
\(=\frac{10}{15}-\frac{5}{15}+\frac{7}{15}\)
\(=\frac{12}{15}\)
\(=\frac{4}{5}\)
c, \(\frac{3}{8}.3\frac{1}{3}\)
\(=\frac{3}{8}.\frac{10}{3}\)
\(=\frac{10}{8}\)
\(=\frac{5}{4}\)
d, \(\frac{-3}{5}+0,8.\left(-7\frac{1}{2}\right)\)
\(=\frac{-3}{5}+\frac{4}{5}.\frac{-15}{2}\)
\(=\frac{-3}{5}+\frac{-60}{10}\)
\(=\frac{-3}{5}+\frac{-30}{5}\)
\(=\frac{-33}{5}\)
e, \(\frac{2}{5}.8\frac{1}{3}+1\frac{2}{3}.\frac{2}{5}\)
\(=\frac{2}{5}.\left(8\frac{1}{3}+1\frac{2}{3}\right)\)
\(=\frac{2}{5}.10\)
\(=4\)
f, \(\frac{3}{7}.19\frac{1}{3}-\frac{3}{7}.33\frac{1}{3}\)
\(=\frac{3}{7}.\left(19\frac{1}{3}-33\frac{1}{3}\right)\)
\(=\frac{3}{7}.-14\)
\(=-6\)
~Study well~
#KSJ
a) \(\frac{4}{9}x+\frac{2}{5}-\frac{1}{3}x=\frac{2}{9}-\frac{1}{4}x\)
\(\Leftrightarrow\frac{13}{36}x=-\frac{8}{45}\)
\(\Rightarrow x=-\frac{32}{65}\)
b) \(\left(\frac{2}{3}x-\frac{1}{2}\right).\left(-\frac{2}{3}\right)+\frac{1}{5}=-\frac{3}{4}\)
\(\Leftrightarrow-\frac{4}{9}x+\frac{1}{3}+\frac{1}{5}=-\frac{3}{4}\)
\(\Leftrightarrow\frac{4}{9}x=\frac{77}{60}\)
\(\Rightarrow x=\frac{231}{80}\)
a) \(\frac{4}{9}x+\frac{2}{5}-\frac{1}{3}x=\frac{2}{9}-\frac{1}{4}x\)
=> \(\frac{4}{9}x-\frac{1}{3}x+\frac{2}{5}-\frac{2}{9}+\frac{1}{4}x=0\)
=> \(\left(\frac{4}{9}x-\frac{1}{3}x+\frac{1}{4}x\right)+\left(\frac{2}{5}-\frac{2}{9}\right)=0\)
=> \(\frac{13}{36}x+\frac{8}{45}=0\)
=> \(\frac{13}{36}x=-\frac{8}{45}\)
=> \(x=-\frac{32}{65}\)
b) \(\left(\frac{2}{3}x-\frac{1}{2}\right)\cdot\frac{-2}{3}+\frac{1}{5}=\frac{-3}{4}\)
=> \(\left(\frac{2}{3}x-\frac{1}{2}\right)\cdot\frac{-2}{3}=-\frac{19}{20}\)
=> \(\frac{2}{3}x-\frac{1}{2}=\left(-\frac{19}{20}\right):\left(-\frac{2}{3}\right)=\left(-\frac{19}{20}\right)\cdot\left(-\frac{3}{2}\right)=\frac{57}{40}\)
=> \(\frac{2}{3}x=\frac{57}{40}+\frac{1}{2}=\frac{77}{40}\)
=> \(x=\frac{77}{40}:\frac{2}{3}=\frac{77}{40}\cdot\frac{3}{2}=\frac{231}{80}\)
A=1+(2-3-3+5)+(6-7-8+9)+....+(98-99-100+101)+102
=1+0+0+....+102=103
b) |1-2x|>7
=> 1-2x>7 hoặc 1-2x<-7
=> 2x<-6 hoặc 2x>8
=> x<-3 hoặc x>4
\(\frac{3}{4}x-\frac{2}{3}.\left(\frac{3}{5}x-\frac{6}{5}\right)=\frac{1}{7}-\frac{2}{9}x\)
\(\frac{3}{4}x-\frac{2}{5}x+\frac{4}{5}=\frac{1}{7}-\frac{2}{9}x\)
\(\left(\frac{3}{4}-\frac{2}{5}\right)x+\frac{4}{5}=\frac{1}{7}-\frac{2}{9}x\)
\(\left(\frac{15}{20}-\frac{8}{20}\right)x+\frac{4}{5}=\frac{1}{7}-\frac{2}{9}x\)
\(\frac{7}{20}x+\frac{4}{5}=\frac{1}{7}-\frac{2}{9}x\)
\(\frac{1}{7}-\frac{4}{5}=\frac{2}{9}x-\frac{7}{20}x\)
\(\frac{5}{35}-\frac{28}{35}=\left(\frac{2}{9}-\frac{7}{20}\right)x\)
\(\frac{-23}{35}=\left(\frac{40}{180}-\frac{63}{180}\right)x\)
\(\frac{-23}{180}x=\frac{-23}{35}\)
\(x=\frac{-23}{35}:\frac{-23}{180}\)
\(x=\frac{-23}{35}.\frac{180}{-23}\)
\(x=\frac{180}{35}\)
Vậy \(x=\frac{180}{35}\)
Chúc bạn học tốt
\(\frac{5}{6}x+\frac{1}{2}-\frac{1}{3}x=0.75x-\frac{7}{8}\)
\(\frac{5}{6}x-\frac{1}{3}x-\frac{3}{4}x=-\frac{7}{8}-\frac{1}{2}\) ( 3/4x là 0,75x nha)
\(x\times\left(\frac{10}{12}-\frac{4}{12}-\frac{9}{12}\right)=-\frac{7}{8}-\frac{4}{8}\)
\(x\times\left(-\frac{3}{12}\right)=-\frac{11}{8}\Rightarrow x=\frac{11}{8}\div\left(-\frac{3}{12}\right)=-\frac{11}{2}\)
Bài giải
\(\frac{2}{7}x+\frac{5}{9}=\frac{1}{2}x+\frac{3}{4}\)
\(\frac{2}{7}x-\frac{1}{2}x=\frac{3}{4}-\frac{5}{9}\)
\(-\frac{5}{14}x=\frac{7}{36}\)
\(x=\frac{7}{36}\text{ : }\frac{-5}{14}\)
\(x=-\frac{49}{90}\)
\(\frac{2}{7}x+\frac{5}{9}=\frac{1}{2}x+\frac{3}{4}\)
\(\frac{2}{7}x-\frac{1}{2}x=\frac{3}{4}-\frac{5}{9}\)
\(x.\left(\frac{2}{7}-\frac{1}{2}\right)=\frac{7}{36}\)
\(x.-\frac{3}{14}=\frac{7}{36}\)
\(x=\frac{7}{36}:-\frac{3}{14}\)
\(x=-\frac{49}{54}\)
vậy \(x=-\frac{49}{54}\)
\(\frac{x}{y}=\frac{3}{5}\Rightarrow\frac{x}{3}=\frac{y}{5}\) ; \(\frac{y}{z}=\frac{4}{3}\Rightarrow\frac{y}{4}=\frac{z}{3}\)
ta có :
\(\frac{x}{3}=\frac{y}{5}\)
\(\frac{y}{4}=\frac{z}{3}\)
\(\Rightarrow\frac{x}{12}=\frac{y}{20}=\frac{z}{15}\)
áp dụng tính chất dãy tỉ số bằng nhau, ta có :
\(\frac{x}{12}=\frac{y}{20}=\frac{z}{15}=\frac{4x}{48}=\frac{2z}{30}=\frac{4x-y+2z}{48-20+30}=\frac{116}{58}=2\)
\(\frac{x}{12}=3\Rightarrow x=36\)
\(\frac{y}{20}=2\Rightarrow y=40\)
\(\frac{z}{15}=2\Rightarrow z=30\)
a)\(\frac{1}{2}-2.\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+.....+\frac{1}{48.50}\right)\)
=\(\frac{1}{2}-\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+.....+\frac{2}{48.50}\right)\)
=\(\frac{1}{2}-\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+.....+\frac{1}{48}-\frac{1}{50}\right)\)
=\(\frac{1}{2}-\left(\frac{1}{2}-\frac{1}{50}\right)\)
=\(\frac{1}{50}\)
\(1)a)\frac{1}{2}-2\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{48.50}\right)\)
\(=\frac{1}{2}-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{24.25}\right)\)
\(=\frac{1}{2}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{24}-\frac{1}{25}\right)\)
\(=\frac{1}{2}-\left(1-\frac{1}{25}\right)\)
\(=\frac{1}{2}-\frac{24}{25}=\frac{-23}{50}\)
\(\)