Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) = = -4.
b) = = (2-x) = 4.
c) =
= = = .
d) = = -2.
e) = 0 vì (x2 + 1) = x2( 1 + ) = +∞.
f) = = -∞, vì > 0 với ∀x>0.
a) Từ hệ thức suy ra d' = φ(d) = .
b) +) φ(d) = = +∞ .
Ý nghĩa: Nếu vật thật AB tiến dần về tiêu điểm F sao cho d luôn lớn hơn f thì ảnh của nó dần tới dương vô cực.
+) φ(d) = = -∞.
Ý nghĩa: Nếu vật thật AB tiến dần về tiêu điểm F sao cho d luôn nhỏ hơn f thì ảnh của nó dần tới âm vô sực.
+) φ(d) = = = f.
Ý nghĩa: Nếu vật thật AB ở xa vô cực so với thấu kính thì ảnh của nó ở ngay trên tiêu diện ảnh (mặt phẳng qua tiêu điểm ảnh F' và vuông góc với trục chính).
+) Hàm số f(x) = xác định khi và chỉ khi x2+ x - 6 ≠ 0 <=> x ≠ -3 và x ≠ 2.
Hàm số f(x) liên tục trên các khoảng (-∞; -3), (-3; 2) và (2; +∞)
+) Hàm số g(x) = tanx + sinx xác định khi và chỉ khi
tanx ≠ 0 <=> x ≠ +kπ với k ∈ Z.
Hàm số g(x) liên tục trên các khoảng ( - +kπ; +kπ) với k ∈ Z.
= + +
= + + (1)
= + +
= + + (2)
Nhân (2) với 2 rồi cộng với (1) ta được: = +
Vậy , , đồng phẳng.
a) Ta có g(x) = = (x2 + 2x + 4) = 22 +2.2 +4 = 12.
Vì g(x) ≠ g(2) nên hàm số y = g(x) gián đoạn tại x0 = 2.
b) Để hàm số y = f(x) liên tục tại x0 = 2 thì ta cần thay số 5 bởi số 12.
a) Học sinh tự vẽ hình. Đồ thị hàm số y = f(x) là một đường không liền nét mà bị đứt quãng tại x0 = -1. Vậy hàm số đã cho liên tục trên khoảng (-∞; -1) và (- 1; +∞).
b) +) Nếu x < -1: f(x) = 3x + 2 liên tục trên (-∞; -1) (vì đây là hàm đa thức).
+) Nếu x> -1: f(x) = x2 - 1 liên tục trên (-1; +∞) (vì đây là hàm đa thức).
+) Tại x = -1;
Ta có f(x) = (3x + 2) = 3(-1) +2 = -1.
f(x) = (x2 - 1) = (-1)2 - 1 = 0.
Vì f(x) ≠ f(x) nên không tồn tại f(x). Vậy hàm số gián đoạn tại
x0 = -1.
a) Hàm số f(x) = xác định trên R\{} và ta có x = 4 ∈ (;+∞).
Giả sử (xn) là dãy số bất kì và xn ∈ (;+∞); xn ≠ 4 và xn → 4 khi n → +∞.
Ta có lim f(xn) = lim = = .
Vậy = .
b) Hàm số f(x) = xác định trên R.
Giả sử (xn) là dãy số bất kì và xn → +∞ khi n → +∞.
Ta có lim f(xn) = lim = lim = -5.
Vậy = -5.