Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sĩ số của lớp 7A là: \(15+14+10+6=45\) nên số phần tử của không gian mẫu chính là số cách chọn 5 bạn trong 45 bạn.
Bạn đầu tiên có 45 cách chọn, bạn thứ hai có 44 cách chọn,..., bạn thứ năm sẽ có 41 cách chọn \(\Rightarrow\) Có \(45.44.43.42.41\) cách chọn ra nhóm 5 bạn, nhưng vì theo cách chọn trên, mỗi nhóm 5 bạn sẽ bị lặp lại \(1.2.3.4.5=120\) lần nên có tất cả \(\dfrac{45.44.43.42.41}{120}=1221759\) hay \(n\left(\Omega\right)=1221759\)
Gọi A là biến cố: "Trong nhóm 5 bạn được chọn có đủ các dân tộc H' Mông, Mường, Tày, Thái."
Ta thấy có các TH sau xảy ra:
TH1: Trong 5 bạn có 2 bạn của dân tộc H'Mông: Có \(15.14.14.10.6\) cách. Nhưng khi đó mỗi nhóm sẽ bị tính 120 lần (như trên) nên có tất cả \(\dfrac{15.14.14.10.6}{120}=1470\) cách chọn nhóm.
TH2: Trong 5 bạn có 2 bạn của dân tộc Mường thì tương tự, có \(\dfrac{15.14.13.10.6}{120}=1365\) cách chọn nhóm.
TH3: Trong 5 bạn có 2 bạn của dân tộc Tày: Có \(\dfrac{15.14.10.9.6}{120}=945\) cách chọn nhóm.
TH4: Trong 5 bạn có 2 bạn của dân tộc Thái: Có \(\dfrac{15.14.10.6.5}{120}=525\) cách chọn nhóm
\(\Rightarrow n\left(A\right)=1470+945+1365+525=4305\)
\(\Rightarrow P\left(A\right)=\dfrac{n\left(A\right)}{n\left(\Omega\right)}=\dfrac{4305}{1221759}=\dfrac{5}{1419}\)
Giải :
Gọi số bạn tham dự kì thi là n (bạn, \(n\inℕ^∗\)).
Mỗi bạn sẽ chào các bạn khác tạo thành n – 1 (trừ chính mình) lần giơ tay, nhưng vì mỗi bạn sẽ không chào 3 bạn cùng đội nên sẽ có tất cả: n × (n – 4) số lần giơ tay giữa 2 bạn.
Lại thấy số lần chào của mỗi cặp bị nhắc lại 2 lần nên số lần chào nhau thực tế là: n × (n – 4) : 2
Ta có: n × (n – 4) : 2 = 240 nên n × (n – 4) = 480 = 20 × 24.
Vậy có 24 bạn tham dự kì thì.
Số đội dự thi là: 24 : 4 = 6(đội)
Vậy có 6 đội tham gia kì thi học sinh giỏi.
Giản Nguyên mình cũng ko biết bạn nhé, đề bài ghi như vậy nên mình mới ko hiểu