K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2017

17 tháng 5 2015

Giả sử tồn tại các số nguyên a; b; c thỏa mãn:

a.b.c + a = -625   ;     a.b.c + b = -633           và        a.b.c + c = -597

Xét từng điều kiện ta có:

a.b.c + a = a.(b.c + 1) = -625

a.b.c + b = b.(a.c + 1) = -633

a.b.c + c = c.(a.b + 1) = -597

Chỉ có hai số lẻ mới có tích là một số lẻ \(\Rightarrow\) a; b; c đều là số lẻ \(\Rightarrow\) a.b.c cũng là số lẻ.

Khi đó a.b.c + a là số chẵn, không thể bằng -625 (số lẻ)

    Vậy không tồn tại các số nguyên a; b; c thỏa mãn điều kiện đề bài.

17 tháng 5 2015

Ta có:

abc + a = -625 (1)

abc + b = -633 (2) 

abc + c = -597 93)

Từ (1), (2) và (3) => a,b và c lẻ => abc lẻ => abc + a chẵn (vì lẻ + lẻ = chẵn) mâu thuẫn với -625 là số lẻ

Vậy không tồn tại số nguyên a, b, c thỏa mãn

17 tháng 10 2015

xét abc lẻ

=>a chẵn=>abc là số chẵn(trái giả thuyết)

xét abc chẵn:

=>a;b;c lẻ=>abc lẻ(trái giả thuyết)

Vậy không tồn tại a;b;c

1 tháng 10 2016

Ta xét a,b,c:Nếu là chẵn:

                   =>a,b,c lẻ(trái với yêu cầu)

                  :Nếu là lẻ:

                   =>a là chẵn =>abc chẵn(trái với yêu cầu)

=>không tồn tại các số tự nhiên a,b,c