Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với n = 1 thì 1! = 1 = 1² là số chính phương .
Với n = 2 thì 1! + 2! = 3 không là số chính phương
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương .
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.
Với n = 1 thì 1! = 1 = 1² là số chính phương .
Với n = 2 thì 1! + 2! = 3 không là số chính phương
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương .
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.
a) ta có 2.16\(\ge\)2n > 4
\(\rightarrow\)2.24\(\ge\)2n>22
\(\rightarrow\) 25\(\ge\)2n>22
\(\Rightarrow\) n\(\in\){ 3;4;5}
b) làm tương tự
Để \(n^2+2002\) là số chính phương thì \(n^2+2002=a^2\)(a là số tự nhiên khác 0)
\(\Rightarrow a^2-n^2=2002\Rightarrow\left(a-n\right)\left(a+n\right)=2002\)
Do \(2002⋮2\)\(\Rightarrow\left(a-n\right)\left(a+n\right)⋮2\)hay \(a-n⋮2\)hoặc \(a+n⋮2\)hoặc \(\)a-n và a+n đều\(⋮2\)
mà a-n-(a+n)=-2n \(⋮2\)\(\Rightarrow\)a-n và a+n cùng chẵn hoặc lẻ \(\Rightarrow\) a-n; a+n đều \(⋮2\)\(\Rightarrow\)\(\left(a-n\right)\left(a+n\right)⋮4\)
Mà 2002 ko chia hết cho 4 \(\Rightarrow\)ko tồn tại n đẻ n^2+2002 là số chính phương
giả sử n2 + 2002 = a2
nếu a và n không cùng tính chẵn lẻ
a2 - n2 là số lẻ
mà 2002 là số chẵn
nên nếu a và n không cùng tính chẵn lẻ thì n2 +2002 ko phải là 1 số chính phương
nếu a và n cùng tính chẵn lẻ thì a và n khác 2002 ( vì 2002 không chia hết cho 4 mà a2 - n2 chia hết cho 4 )
vậy ko có số nào thích hợp
Gọi số cần tìm là a
ta có n^2+2002=a^2
a^2-n^2=2002
(a-n)(a+n)=2002
do 2002 chia hết cho 2=>a-n hoặc a+n cũng phải chia hết cho 2
mà a-n-(a+n)=-2n chia hết cho 2
=>a-n và a+n là cặp chẵn lẻ=>a-n hay a+n đều chia hết cho 2
mà 2 số đều chia hết cho 2 thì tích của chúng sẽ chia hết cho 4
=>(a-n)(a+n) chia hết cho 4
mà 2002 ko chia hết cho 4
=>ko có số thự nhiên nào để n^2 +2002 là số chính phương
DĐeo