Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bài ra :
\(\left(x+5\right)\left(x^2-1\right)\left(3-x\right)>0\)
<=> \(\left(x+5\right)\left(x-1\right)\left(x+1\right)\left(3-x\right)>0\)
Đặt \(\left(x+5\right)\left(x-1\right)\left(x+1\right)\left(3-x\right)=A\)
Ta có bảng xét dấu :
\(-\infty\) | -5 | -1 | 1 | 3 | \(+\infty\) | ||||
(x+5) | - | 0 | + | + | + | + | |||
x2-1 | + | + | 0 | - | 0 | + | + | ||
3-x | + | + | + | + | 0 | - | |||
A | - (loại) | 0 (loại) | +(t.m) | 0(loại) | -(loại) | 0(loại) | +(t.m) | 0(loại) | -(loại) |
Từ bảng xét dấu trên suy ra :
\(A>0\Rightarrow\left[{}\begin{matrix}-5< x< -1\\1< x< 3\end{matrix}\right.\)
a) ta có :
\(\Delta'=1^2-\left(-1-m\right)\left(m^2-1\right)=1-\left(-m^2+1-m^3+m\right)=1+m^2-1+m^3-m=m^3+m^2-m=m\left(m^2+m-1\right)\)để phương trình có nghiệm thì \(\Delta\ge0\)
hay \(m\left(m^2+m-1\right)\ge0\)
=> \(\left\{{}\begin{matrix}m\ge0\\m^2+m-1\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\ge0\\\left(m+\dfrac{1}{2}\right)^2-\dfrac{5}{4}\ge0\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}m\ge0\\\left(m+\dfrac{1}{2}\right)^2\ge\dfrac{5}{4}\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}m\ge0\\\left[{}\begin{matrix}m+\dfrac{1}{2}\ge\\m+\dfrac{1}{2}\le-\dfrac{\sqrt{5}}{2}\end{matrix}\right.\end{matrix}\right.\dfrac{\sqrt{5}}{2}}\)
ta thấy:\(\dfrac{a}{1+b^2}=a-\dfrac{ab^2}{1+b^2}\)
> áp dụng bđt cosi: 1+b2>=2b
>\(a-\dfrac{ab^2}{1+b^2}\ge a-\dfrac{ab^2}{2b}=a-\dfrac{ab}{2}\)
cminh tương tự với \(\dfrac{b}{1+c^2};\dfrac{c}{1+b^2}\)
cộng lần lượt 2 vế ta vừa cminh
>bthức tương đương với: a+b+c-\(\dfrac{ab+bc+ca}{2}\ge3-\dfrac{3}{2}=\dfrac{3}{2}\) đpcminh
(vì (a+b+c)2>=3(ab+bc+ca) hay 32>=3(ab+bc+ca)
> ab+bc+ca<=3)
MODE-> BẤM NÚT XUỐNG-> BẤM CHỌN SỐ 1-> CHỌN SỐ 1 -> RỒI CHỌN BPT BẠN MUỐN NHÉ
Câu a hạ bậc rồi áp dụng cosa + cosb
Câu b thì mối liên hệ giữa tan với cot là ra
gọi 3 ngăn cần tìm là a,b,c ta có
a/5=b/6 và b/8=c/9\(\dfrac{ }{ }\)
⇒a/20=b/24=c/27⇒a/20=b/24=c/27=\(\dfrac{c-a}{27-20}\) =14/7=2
⇒a=2.20=40
⇒b=2.24=48
⇒c=2.27=54
\(\Leftrightarrow\) Với mọi \(x>0\) ta luôn có:
\(x^3-x^2-2x+m\left(x+1\right)\ge0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-2x\right)+m\left(x+1\right)\ge0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-2x+m\right)\ge0\)
\(\Leftrightarrow x^2-2x+m\ge0\) (do \(x+1>0\) ; \(\forall x>0\))
\(\Leftrightarrow m\ge-x^2+2x\)
\(\Leftrightarrow m\ge\max\limits_{x>0}\left(-x^2+2x\right)=1\)
\(\Rightarrow m=\left\{1;2;3;4;...;10\right\}\)
Chọn D