\(n^{^4}+4\)không phải số nguyên tố

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2019

\(4x^4+1=\left(2x^2+1\right)^2-4x^2=\left(2x^2+2x+1\right)\left(2x^2-2x+1\right).\)

x>1\(\Rightarrow2x^2-2x+1>1,2x^2+2x+1>1\)=> là hợp số

7 tháng 3 2018

+, Nếu n chia 5 dư +-1 thì :

n^2 chia 5 dư 1 => n^2+4 chia hết cho 5

Mà n^2+4 > 5 => n^2+4 là hợp số

+, Nếu n chia 5 dư +-3 thì :

n^2 chia 5 dư 4 => n^2+16 chia hết cho 5

Mà n^2+16 > 5 => n^2+16 lừ hợp số 

=> để n^2+4 và n^2+16 đều là số nguyên tố thì n chia hết cho 5

Tk mk nha

28 tháng 4 2016

A< 1+1/(23-2)+1/(33-3)+...+1/(n3-n)

Đặt B=1/(23-2)..... =>B=1/1.2.3+1/2.3.4+...+1/(n-1)n(n+1) =1/2.(1/1.2-1/2.3+1/2.3-1/3.4+1/3.4....-1/n(n+1))

                                  =1/2.(1/2-1/n(n+1))=1/4-1/2.n.(n+1)<1/4

=>B<1/4 =>A=B+1<(1/4)+1

 =>A<5/4

28 tháng 4 2016

999 - 888 - 111 + 111 - 111 + 111 - 111

= 111 - 111 + 111 -111 + 111 - 111

= 0 + 111 - 111 + 111 - 111

= 111 - 111 + 111 - 111

= 0 + 111 - 111

= 111 - 111

= 0

Đáp số: 0

14 tháng 8 2017

không thể chứng mình được đâu bạn nhé 

Ta thấy 4 chia hết cho 2 nên nếu n là số chẵn thì n^4 +4 không thể là số nguyên tố rồi

Còn n là số lẻ thì rất ít khả năng 4^n + 4 là số nguyên tố 

Bạn nên xem lại đề bài nhé

14 tháng 8 2017

Mình nhầm : cm: n>1 thì n^4+4 là số chính phương

9 tháng 2 2021

Giả sử ngược lại \(2^n-1\) là 1 số chính phương lẻ

Khi đó \(2^n-1=\left(2k+1\right)^2\)  \(\left(k\inℕ^∗\right)\)

\(\Leftrightarrow2^n-1=4k^2+4k+1\)

\(\Leftrightarrow2^n=4k^2+4k+2\) 

Nhận thấy VP chia hết cho 2 nhưng không chia hết cho 4

Mà n>1 nên 2n chia hết cho 4

=> vô lý =>  điều g/s sai

=> 2n - 1 không là 1 SCP