Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4x^4+1=\left(2x^2+1\right)^2-4x^2=\left(2x^2+2x+1\right)\left(2x^2-2x+1\right).\)
x>1\(\Rightarrow2x^2-2x+1>1,2x^2+2x+1>1\)=> là hợp số
cmr với mọi n thuộc N; n>1 thỏa mãn \(n^2+4\) và \(n^2+16\) là các số nguyên tố thì n chia hết cho 5
+, Nếu n chia 5 dư +-1 thì :
n^2 chia 5 dư 1 => n^2+4 chia hết cho 5
Mà n^2+4 > 5 => n^2+4 là hợp số
+, Nếu n chia 5 dư +-3 thì :
n^2 chia 5 dư 4 => n^2+16 chia hết cho 5
Mà n^2+16 > 5 => n^2+16 lừ hợp số
=> để n^2+4 và n^2+16 đều là số nguyên tố thì n chia hết cho 5
Tk mk nha
A< 1+1/(23-2)+1/(33-3)+...+1/(n3-n)
Đặt B=1/(23-2)..... =>B=1/1.2.3+1/2.3.4+...+1/(n-1)n(n+1) =1/2.(1/1.2-1/2.3+1/2.3-1/3.4+1/3.4....-1/n(n+1))
=1/2.(1/2-1/n(n+1))=1/4-1/2.n.(n+1)<1/4
=>B<1/4 =>A=B+1<(1/4)+1
=>A<5/4
không thể chứng mình được đâu bạn nhé
Ta thấy 4 chia hết cho 2 nên nếu n là số chẵn thì n^4 +4 không thể là số nguyên tố rồi
Còn n là số lẻ thì rất ít khả năng 4^n + 4 là số nguyên tố
Bạn nên xem lại đề bài nhé
Giả sử ngược lại \(2^n-1\) là 1 số chính phương lẻ
Khi đó \(2^n-1=\left(2k+1\right)^2\) \(\left(k\inℕ^∗\right)\)
\(\Leftrightarrow2^n-1=4k^2+4k+1\)
\(\Leftrightarrow2^n=4k^2+4k+2\)
Nhận thấy VP chia hết cho 2 nhưng không chia hết cho 4
Mà n>1 nên 2n chia hết cho 4
=> vô lý => điều g/s sai
=> 2n - 1 không là 1 SCP