K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2019

Vì \(n\ge2\) nên \(2^n⋮4\)

=> \(2^{2^n}\) có dạng \(2^{4k}\) (\(k\in N\)sao)

Mà \(2^{4k}=16^k\)

Vì một số có tận cùng là 6 lũy thùa với bất kì số tự nhiên khác không đều cho ta số có tận cùng là 6 

=> \(2^{2^n}\)có tận cùng là 6 => \(2^{2^n}+1\)có tận cùng là 7.

T**k mik nhé!

Hok tốt!

30 tháng 3 2020

Ghhg fhgcgh

ta co 0^1=0^2=...=0^n=0

1^1=1^2=...=1^n=1

18 tháng 8 2019

Ta có : \(0^1=0^3=\cdot\cdot\cdot=0^n=0\left(n\ge2\right)\)

\(1^1=1^2=\cdot\cdot\cdot=1^n=1\left(n\ge2\right)\)

Vậy bài toán đã được chứng minh

19 tháng 1 2019

sai đề bài

25 tháng 7 2019

Câu hỏi của Nguyễn Thái Hà - Toán lớp 6 - Học toán với OnlineMath

Bạn tham khảo nhé!

DD
17 tháng 1 2021

\(S=1-\frac{1}{4}+1-\frac{1}{9}+1-\frac{1}{16}+...+1-\frac{1}{n^2}\)

\(S=n-1-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)< n-1\)

\(S=n-1-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)\)

\(>n-1-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\right)\)

\(=n-1-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\right)\)

\(=n-1-\left(1-\frac{1}{n}\right)\)

\(=n-2+\frac{1}{n}>n-2\)

\(\Rightarrow n-2< S< n-1\)

ta có đpcm. 

12 tháng 2 2017

Ta có n là mọi số nguyên \(\Rightarrow\)\(n\in Z\)Ta xét 3 trường hợp

TH1: n là số nguyên âm 

Ta có n2 = Một số nguyên âm bất kì \(.\)Chính nó = Một số nguyên dương

Vậy n < n2

TH2: n là 0

thì n2 = 0 

0=0 vậy n = n

TH3: n là số nguyên duơng

Ta xét n = 1 và n<1

Nếu n = 1 thì n2=1 

Vậy n= n2

Ta xét n<2

Thì nluôn luôn lớn hơn nó 

Vậy \(n\le n^2\)

12 tháng 2 2017

thank you