\(\sqrt{2\sqrt{3\sqrt{4\:...\:\sqrt{2000}}}}\)< 3

Chỉ giúp mình với , mk c...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2019

a) \(ab+bc+ca=1\)\(\Rightarrow\)\(\hept{\begin{cases}a^2b^2+b^2c^2+c^2a^2=1-2abc\left(a+b+c\right)\\\left(a+b+c\right)^2-2=a^2+b^2+c^2\end{cases}}\)

\(A=\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}=\sqrt{a^2b^2c^2+a^2b^2+b^2c^2+c^2a^2+a^2+b^2+c^2+1}\)

\(A=\sqrt{a^2b^2c^2-2abc\left(a+b+c\right)+\left(a+b+c\right)^2}\)

\(A=\sqrt{\left(abc-a-b-c\right)^2}=\left|abc-a-b-c\right|\)

Do a, b, c là các số hữu tỉ nên \(\left|abc-a-b-c\right|\) là số hữu tỉ 

b) \(B=\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}>\sqrt{1+\sqrt{1+\sqrt{1+...+\sqrt{1}}}}=1\)

\(B< \sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{4}}}}=\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2+2}}}}=\sqrt{2+2}=2\)

=> \(1< B< 2\) B không là số tự nhiên 

c) câu này có ng làm r ib mk gửi link 

7 tháng 7 2019

à chỗ câu b) mình nhầm tí nhé 

\(B=\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}>\sqrt{1+\sqrt{1+\sqrt{1+...+\sqrt{1}}}}>1\)

Sửa dấu "=" thành ">" hộ mình 

21 tháng 12 2017

- các cậu giúp mình với mai thứ 6 mình thi hk1 r huhu giúp mình với.........

7 tháng 8 2016

\(\sqrt{7}+\sqrt{5}>\sqrt{12}\)

\(\sqrt{8}+3>6+\sqrt{2}\)

7 tháng 8 2016

Ta có:

\(a.\)Ta có:

\(7>4\) nên \(\sqrt{7}>\sqrt{4}\) 

\(\Rightarrow\)  \(\sqrt{7}>2\)  \(\left(1\right)\)

và  \(5>4\)  nên  \(\sqrt{5}>\sqrt{4}\)

\(\Rightarrow\)  \(\sqrt{5}>2\)  \(\left(2\right)\)

Mặt khác, ta lại có:  \(\sqrt{12}< \sqrt{16}=4\)  \(\left(i\right)\)

Do đó,  từ hai bđt  \(\left(1\right)\)  và   \(\left(2\right)\) , kết hợp với chú ý  \(\left(i\right)\)  ta suy ra được:

\(\sqrt{7}+\sqrt{5}>\sqrt{12}\)

7 tháng 7 2019

3) Ta có:\(\sqrt{2000}< 2001\)

Áp dụng BĐT AM-GM:

\(\sqrt{1999.\sqrt{2000}}< \sqrt{1999.2001}< \frac{1999+2001}{2}=2000\)

Tương tự ta có:

\(\sqrt{2\sqrt{3\sqrt{4--...\sqrt{1999\sqrt{2000}}}}}< \sqrt{2\sqrt{3\sqrt{4=.\sqrt{1999.2001}}}}< \sqrt{2\sqrt{3\sqrt{4-\sqrt{1998.2000}}}}--< \sqrt{2.4}< 3\)

7 tháng 7 2019

1)

Với ab + bc + ac = 1 có:

\(a^2+1=a^2+ab+ac+bc=a\left(a+b\right)+c\left(a+b\right)=\left(a+c\right)\left(a+b\right)\)

\(b^2+1=b^2+bc+ca+ab=b\left(b+c\right)+a\left(b+c\right)=\left(a+b\right)\left(b+c\right)\)

\(c^2+1=c^2+bc+ca+ab=c\left(b+c\right)+a\left(b+c\right)=\left(a+c\right)\left(b+c\right)\)

Do đó: \(\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}\)

\(=\sqrt{\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(b+a\right)\left(c+a\right)\left(c+b\right)}\)

\(=\sqrt{\left(a+b\right)^2\left(a+c\right)^2\left(b+c\right)^2}\)

\(=|\left(a+b\right)\left(a+c\right)\left(b+c\right)|\)

Vì \(a,b,c\in Q\Rightarrow|\left(a+b\right)\left(a+c\right)\left(b+c\right)|\in Q\left(đpcm\right)\)

1 tháng 10 2018

\(a)\)\(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)

\(=\)\(\sqrt{6-6\sqrt{6}+9}+\sqrt{24-12\sqrt{6}+9}\)

\(=\)\(\sqrt{\left(\sqrt{6}+3\right)}+\sqrt{\left(\sqrt{24}+3\right)}\)

\(=\)\(\left|\sqrt{6}+3\right|+\left|\sqrt{24}+3\right|\)

\(=\)\(\sqrt{6}+3+\sqrt{24}+3\)

\(=\)\(\sqrt{6}\left(1+\sqrt{4}\right)+9\)

\(=\)\(3\sqrt{6}+9\)

Chúc bạn học tốt ~ 

1 tháng 10 2018

\(b)\)\(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{4-2\sqrt{3}}\)

\(=\)\(\left|2-\sqrt{3}\right|+\sqrt{3-2\sqrt{3}+1}\)

\(=\)\(2-\sqrt{3}+\sqrt{\left(\sqrt{3}-1\right)^2}\) ( vì \(2=\sqrt{4}>\sqrt{3}\) ) 

\(=\)\(2-\sqrt{3}+\left|\sqrt{3}-1\right|\)

\(=\)\(2-\sqrt{3}+\sqrt{3}-1\) ( vì \(\sqrt{3}>\sqrt{1}=1\) ) 

\(=\)\(1\)

Chúc bạn học tốt ~ 

PS : mới lớp 8 sai thì thông cảm >.< 

13 tháng 6 2017

\(\sqrt{2\sqrt{3\sqrt{4...\sqrt{2000}}}}=\sqrt{2\sqrt{3\sqrt{4...\sqrt{1999\sqrt{2000}}}}}\)

\(< \sqrt{2\sqrt{3\sqrt{4...\sqrt{1999.2001}}}}< \sqrt{2\sqrt{3\sqrt{4...\sqrt{1998.\frac{1999+2001}{2}}}}}\)

\(< \sqrt{2\sqrt{3\sqrt{4...\sqrt{1998.2000}}}}< ...< \sqrt{2.\frac{3+5}{2}}\)

\(=\sqrt{2.4}=\sqrt{8}< 3\)

30 tháng 6 2018

\(A=\sqrt{24+8\sqrt{5}}+\sqrt{7-4\sqrt{3}}\)

\(=\sqrt{5+2.4\sqrt{5}+16}+\sqrt{4-2.2\sqrt{3}+3}\)

\(=\sqrt{\left(\sqrt{5}+4\right)}^2+\sqrt{\left(2-\sqrt{3}\right)}^2\)

\(=|\sqrt{5}+4|+|2-\sqrt{3}|\)

\(=\sqrt{5}+4+4-\sqrt{3}\)

\(=\sqrt{5}-\sqrt{3}+8\)

Ko biết đề sai ko?

30 tháng 6 2018

Cj gì ơi , mặc dù em không biết làm bài của cj e mới có lớp 7 thui 

Nhưng .... e iu cái ảnh 4D trong hình đại diện của cj 

Cj có phải ARMY ko zợ , nếu phải cho e kb nha , ko phải cx dc ạ !!!

Đừng anti tui nhé , mọi người , mơn nhìu !!!

~ HOK TỐT ~

20 tháng 9 2017

Ta có:

\(\sqrt{2\sqrt{3\sqrt{4...\sqrt{2000}}}}\)

\(< \sqrt{2\sqrt{3\sqrt{4...\sqrt{2000.2002}}}}\)

\(=\sqrt{2\sqrt{3\sqrt{4...\sqrt{1999\sqrt{2001^2-1}}}}}\)

\(< \sqrt{2\sqrt{3\sqrt{4...\sqrt{1999.2001}}}}\)

\(........................................\)

\(< \sqrt{2.4}=\sqrt{8}< 3\)

22 tháng 9 2017

Ta có:

√2√3√4...√2000

<√2√3√4...√2000.2002

=√2√3√4...√1999√20012−1

<√2√3√4...√1999.2001

........................................

<√2.4=√8<3