Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:Với a,b,c,d dương
Ta có: \(\frac{a}{a+b+c+d}<\frac{a}{a+b+c}<\frac{a+d}{a+b+c+d}\)
\(\frac{b}{a+b+c+d}<\frac{b}{b+c+d}<\frac{b+a}{a+b+c+d}\)
\(\frac{c}{a+b+c+d}<\frac{c}{a+c+d}<\frac{c+b}{a+b+c+d}\)
\(\frac{d}{a+b+c+d}<\frac{d}{a+b+d}<\frac{d+b}{a+b+c+d}\)
Cộng vế theo vế 4 bất đẳng thức tên ta có:
\(\) 1< A <2 (đpcm)
Bài 2: a,b,c là độ dài 3 cạnh của tam giác.ta có:
\(\frac{a}{b+c}<\frac{2a}{a+b+c}\)
\(\frac{b}{c+a}<\frac{2b}{a+b+c}\)
\(\frac{c}{a+b}<\frac{2c}{a+b+c}\)
Cộng 3 bất đẳng thức trên vế theo vế ta có:
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}<\frac{2\left(a+b+c\right)}{a+b+c}=2\left(đpcm\right)\)
b, \(\frac{a+b}{a+b+c}>\frac{a+b}{a+b+c+d}\); \(\frac{b+c}{b+c+a}>\frac{b+c}{a+b+c+d}\)
\(\frac{c+d}{c+d+a}>\frac{c+d}{a+b+c+d};\frac{d+a}{a+d+b}>\frac{a+d}{a+b+c+d}\)
Cộng các bĐT trên
=> \(B>\frac{2\left(a+b+c+d\right)}{a+b+c+d}=2\)
Ta có Với \(0< \frac{x}{y}< 1\)
=> \(\frac{x}{y}< \frac{x+z}{y+z}\)
Áp dụng ta có
\(B>\frac{a+b+d}{a+b+c+d}+...+\frac{d+a+c}{a+b+c+d}=3\)
Vậy 2<B<3
Từ giả thiết => \(\frac{b}{b+1}+\frac{c}{c+1}+\frac{d}{d+1}\le1-\frac{a}{a+1}=\frac{1}{a+1}\)
Áp dụng bđt Cauchy cho 3 số dương : \(\frac{1}{a+1}\ge\frac{b}{b+1}+\frac{c}{c+1}+\frac{d}{d+1}\ge3.\sqrt[3]{\frac{bcd}{\left(b+1\right)\left(c+1\right)\left(d+1\right)}}\). Tương tự: \(\frac{1}{b+1}\ge3.\sqrt[3]{\frac{acd}{\left(a+1\right)\left(c+1\right)\left(d+1\right)}}\)
\(\frac{1}{c+1}\ge3.\sqrt[3]{\frac{abd}{\left(a+1\right)\left(b+1\right)\left(d+1\right)}}\)
\(\frac{1}{d+1}\ge3.\sqrt[3]{\frac{abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}\)
Nhân từ 4 bđt: \(1\ge81abcd\Rightarrow abcd\le\frac{1}{81}\)
chứng minh bổ đề:
\(\frac{a}{b}< \frac{c}{d}\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
ta có:
ad<bc
=>ab+ad<ab+bc
=>a(b+d)<b(a+c)
\(\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\)
ad<bc
=>ad+cd<bc+cd
=>d(a+c)<c(b+d)
\(\Leftrightarrow\frac{a+c}{b+d}< \frac{c}{d}\)
\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
ta có:
\(\frac{a}{b}< \frac{c}{d}\Leftrightarrow\frac{ab}{b^2}< \frac{cd}{d^2}\Leftrightarrow\frac{ab}{b^2}< \frac{ab+cd}{b^2+d^2}< \frac{cd}{d^2}\Leftrightarrow\frac{a}{b}< \frac{ab+cd}{b^2+d^2}< \frac{c}{d}\)
=>đpcm
mà bn lấy mấy bài bất đẳng thức ở đâu thế
a) Áp dụng BĐT Cauchy-Schwarz dạng Engel:
\(VT=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\)
Đẳng thức xảy ra khi a =b = c
b)Tương tự câu a
c)\(\sqrt{\frac{a}{b+c+d}}=\frac{a}{\sqrt{a\left(b+c+d\right)}}\ge\frac{2a}{a+b+c+d}\)
Tương tự 3 BĐT còn lại và cộng theo vế ta được \(VT\ge2\)
Nhưng dấu "=" không xảy ra nên ta có đpcm.
d) Chưa nghĩ ra.
Bài 2:
a) Đề thiếu (or sai hay sao ý)
d, Với a,b >0.Áp dụng bđt svac-xơ có:
\(\frac{3}{a}+\frac{1}{b}=\frac{3}{a}+\frac{2}{2b}\ge\frac{\left(\sqrt{3}+\sqrt{2}\right)^2}{a+2b}=\frac{5+2\sqrt{6}}{a+2b}>\frac{\sqrt{24}+2\sqrt{6}}{a+2b}\)
=> \(\frac{3}{a}+\frac{1}{b}>\frac{4\sqrt{6}}{a+2b}\)
a) Áp dụng bdt cosi schwars ta có
\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{d+a}\)
\(\ge\frac{\left(a+b+c+d\right)^2}{a+b+b+c+c+d+d+a}\)
\(=\frac{a+b+c+d}{2}\)
Với a,b,c,d là các số dương, ta có :
\(\frac{a}{a+b+c}>\frac{a}{a+b+c+d};\frac{b}{b+c+d}>\frac{b}{a+b+c+d}\)
\(\frac{c}{c+d+a}>\frac{c}{a+b+c+d};\frac{d}{d+a+b}>\frac{d}{a+b+c+d}\)
Cộng 4 bất đẳng thức trên, ta đc :
\(1< \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}\)(1)
Lại có :
\(\frac{a}{a+b+c}< \frac{a}{a+c};\frac{c}{c+d+a}< \frac{c}{a+c}\Rightarrow\frac{a}{a+b+c}+\frac{c}{a+d+a}< 1\)(2)
\(\frac{b}{b+c+d}< \frac{b}{b+d};\frac{d}{d+a+b}< \frac{d}{b+d}\Rightarrow\frac{b}{b+c+d}+\frac{d}{d+a+b}< 1\)(3)
(1),(2),(3) => đpcm