\(\frac{1+sin4x+cos4x}{1-sin4x+cos4x}=tan\left(2x+\frac{15}{4}\rig...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 6 2020

\(\frac{1+sin4x+cos4x}{1-sin4x+cos4x}=\frac{1+2sin2x.cos2x+2cos^22x-1}{1-2sin2x.cos2x+2cos^22x-1}\)

\(=\frac{2cos2x\left(sin2x+cos2x\right)}{2cos2x\left(cos2x-sin2x\right)}=\frac{sin2x+cos2x}{cos2x-sin2x}\)

\(=\frac{\sqrt{2}sin\left(2x+\frac{\pi}{4}\right)}{\sqrt{2}cos\left(2x+\frac{\pi}{4}\right)}=tan\left(2x+\frac{\pi}{4}\right)\)

\(\left(sin5x-cos5x\right)^2-\left(sin3x+cos3x\right)^2\)

\(=\left(\sqrt{2}sin\left(5x-\frac{\pi}{4}\right)\right)^2-\left(\sqrt{2}sin\left(3x+\frac{\pi}{4}\right)\right)^2\)

\(=2sin^2\left(5x-\frac{\pi}{4}\right)-2sin^2\left(3x+\frac{\pi}{4}\right)\)

\(=1-cos\left(10x-\frac{\pi}{2}\right)-1+cos\left(6x+\frac{\pi}{2}\right)\)

\(=-sin10x-sin6x=-2sin8x.cos2x\)

NV
15 tháng 6 2020

\(\frac{sin3x+sinx+sin4x}{cos4x+1+cosx+cos3x}=\frac{2sin2x.cosx+2sin2x.cos2x}{2cos^22x+2cos2x.cosx}=\frac{2sin2x\left(cosx+cos2x\right)}{2cos2x\left(cos2x+cosx\right)}=\frac{sin2x}{cos2x}=tan2x\)

\(\frac{sin^22x+2cos\left(2\pi+\pi+2x\right)-2}{-3+4cos2x+cos\left(\pi-4x\right)}=\frac{sin^22x-2cos2x-2}{-3+4cos2x-cos4x}=\frac{4sin^2x.cos^2x-2\left(2cos^2x-1\right)-2}{-3+4\left(1-2sin^2x\right)-\left(1-2sin^22x\right)}\)

\(=\frac{4cos^2x\left(sin^2x-1\right)}{-8sin^2x+2sin^22x}=\frac{2cos^2x.\left(-cos^2x\right)}{-4sin^2x+4sin^2x.cos^2x}=\frac{cos^4x}{2sin^2x\left(1-cos^2x\right)}\)

\(=\frac{cos^4x}{2sin^4x}=\frac{1}{2}cot^4x\)

15 tháng 6 2020

Mình cảm ơn nhé :))

11 tháng 6 2020

Em cảm ơn

NV
9 tháng 6 2020

\(cos5x.cos3x+sin7x.sinx=\frac{1}{2}cos8x+\frac{1}{2}cos2x-\frac{1}{2}cos8x+\frac{1}{2}cos6x\)

\(=\frac{1}{2}\left(cos6x+cos2x\right)=cos4x.cos2x\)

\(\frac{1-2sin^22x}{1-sin4x}=\frac{cos^22x-sin^22x}{cos^22x+sin^22x-2sin2x.cos2x}\)

\(=\frac{\left(cos2x-sin2x\right)\left(cos2x+sin2x\right)}{\left(cos2x-sin2x\right)^2}=\frac{cos2x+sin2x}{cos2x-sin2x}=\frac{\frac{cos2x}{cos2x}+\frac{sin2x}{cos2x}}{\frac{cos2x}{cos2x}-\frac{sin2x}{cos2x}}=\frac{1+tan2x}{1-tan2x}\)

\(2cosx-3cos\left(\pi-x\right)+5sin\left(4\pi-\frac{\pi}{2}-x\right)+cot\left(\pi+\frac{\pi}{2}-x\right)\)

\(=2cosx+3cosx-5sin\left(\frac{\pi}{2}+x\right)+cot\left(\frac{\pi}{2}-x\right)\)

\(=5cosx-5cosx+tanx=tanx\)

NV
30 tháng 4 2019

\(cosx.cos\left(\frac{\pi}{3}-x\right)cos\left(\frac{\pi}{3}+x\right)=\frac{1}{2}cosx\left(cos\frac{2\pi}{3}+cos2x\right)=-\frac{1}{4}cosx+\frac{1}{2}cosx.cos2x\)

\(=-\frac{1}{4}cosx+\frac{1}{4}\left(cos3x+cosx\right)=\frac{1}{4}cos3x\)

\(sin5x-2sinx\left(cos4x+cos2x\right)=sinx.cos4x+cosx.sin4x-2sinx.cos4x-2sinx.cos2x\)

\(=sin4x.cosx-cos4x.sinx-2sinx.cos2x=sin3x-2sinx.cos2x\)

\(=sinx.cos2x+cosx.sin2x-2sinx.cos2x\)

\(=sin2x.cosx-cos2x.sinx=sinx\)

9 tháng 8 2019

\(D=\frac{1+sin2x+cos2x}{1+sin2x-cos2x}=\frac{1+2sinxcosx+2cos^2x-1}{1+2sinxcosx-1+2sin^2x}\)

\(D=\frac{cosx\left(sinx+cosx\right)}{sinx\left(sinx+cosx\right)}=cotx\)

9 tháng 8 2019

\(F=\frac{sinx+sin4x+sin7x}{cosx+cos4x+cos7x}\)

\(F=\frac{2sin4xcos3x+sin4x}{2cos4xcos3x+cos4x}\)

\(F=\frac{2sin4x\left(cos3x+1\right)}{2cos4x\left(cos3x+1\right)}=tan4x\)

NV
3 tháng 6 2020

\(cos^2x-\left(2sin\frac{x}{2}cos\frac{x}{2}\right)^2=cos^2x-sin^2x=cos2x\)

\(\frac{sin3x}{sinx}-\frac{cos3x}{cosx}=\frac{sin3x.cosx-cos3x.sinx}{sinx.cosx}=\frac{sin\left(3x-x\right)}{\frac{1}{2}sin2x}=\frac{2sin2x}{sin2x}=2\)

\(\frac{cosx+cos3x+cos2x+cos4x}{sinx+sin3x+sin2x+sin4x}=\frac{2cosx.cos2x+2cosx.cos3x}{2sin2x.cosx+2sin3x.cosx}=\frac{2cosx\left(cos2x+cos3x\right)}{2cosx\left(sin2x+sin3x\right)}\)

\(=\frac{cos2x+cos3x}{sin2x+sin3x}=\frac{2cos\frac{x}{2}.cos\frac{5x}{2}}{2sin\frac{5x}{2}.cos\frac{x}{2}}=cot\frac{5x}{2}\)

Mọi người giúp em giải bài này ạ, em cảm ơn Bài 1: Rút gọn biểu thức: A=\(\frac{\sin2x+\sin x}{1+\cos2x+\cos x}\) B=\(cota\left(\frac{1+\sin^2a}{\cos a}-cosa\right)\) C=\(\frac{1+\cos x+\cos2x+\cos3x}{2\cos^2x+\cos x-1}\) D=\(\frac{2\cos\left(\frac{\pi}{2}-x\right)\cdot\sin\left(\frac{\pi}{2}+x\right)\cdot\tan\left(\pi-x\right)}{\cot\left(\frac{\pi}{2}+x\right)\cdot\sin\left(\pi-x\right)}-2\cos...
Đọc tiếp

Mọi người giúp em giải bài này ạ, em cảm ơn

Bài 1: Rút gọn biểu thức:

A=\(\frac{\sin2x+\sin x}{1+\cos2x+\cos x}\)

B=\(cota\left(\frac{1+\sin^2a}{\cos a}-cosa\right)\)

C=\(\frac{1+\cos x+\cos2x+\cos3x}{2\cos^2x+\cos x-1}\)

D=\(\frac{2\cos\left(\frac{\pi}{2}-x\right)\cdot\sin\left(\frac{\pi}{2}+x\right)\cdot\tan\left(\pi-x\right)}{\cot\left(\frac{\pi}{2}+x\right)\cdot\sin\left(\pi-x\right)}-2\cos x\)

E=\(\cos^2x\cdot\cot^2x+3\cos^2x-\cot^2x+2\sin^2x\)

\(F=\frac{\sin^2x+\sin^2x\tan^2x}{\cos^2x+\cos^2x\tan^2x}\)

\(G=\frac{1+cos2a-cosa}{2sina-sina}\)

H=\(sin^{^{ }4}\left(\frac{\pi}{2}+\alpha\right)-cos^4\left(\frac{3\pi}{2}-\alpha\right)+1\)

Bài 2: chứng minh

a) cho \(\Delta ABCchứngminhsin\frac{A+B}{2}=cos\frac{C}{2}\)

b) chứng minh biểu thức sau độc lập với biến x:

A=\(cosx+cos\left(x+\frac{2\pi}{3}\right)+cos\left(x+\frac{4\pi}{3}\right)\)

c)cho \(\Delta\) ABC chứng minh : sin A+sin B+ sin C= \(4cos\frac{A}{2}cos\frac{B}{2}cos\frac{C}{2}\)

d)CMR: \(\frac{cos2a}{1+sin2a}=\frac{cosa-sina}{cosa+sina}\)

e) CMR:\(E=\frac{sin\alpha+cos\alpha}{cos^3\alpha}=1+tan\alpha+tan^2\alpha+tan^3\alpha\)

f) CMR \(\Delta\)ABC cân khi và chỉ khi \(sinB=2cosAsinC\)

g) CM: \(\frac{1-cosx+cos2x}{sin2x-sinx}=cotx\)

h)CM: \(\left(cos3x-cosx\right)^2+\left(sin3x-sinx\right)^2=4sin^2x\)

k) CMR trong tam giac ABC ta có: \(sin2A+sin2B+sin2C=4sinA\cdot sinB\cdot sinC\)

Bài 3: giải bất phương trình:

a)\(\frac{\left(1-3x\right)\left(2x^2+1\right)}{-2x^2-3x+5}>0\)

b)\(\frac{2x+1}{\left(x-1\right)\left(x+2\right)}\ge0\)

c)\(\frac{\left(3x-2\right)\left(x^2-9\right)}{x^2-4x+4}\le0\)

d)\(\frac{\left(2x^2+3x\right)\left(3-2x\right)}{1-x^2}\ge0\)

e)\(\frac{\left(x^2+2x+1\right)\left(x-1\right)}{3-x^2}\)

f)\(\frac{2x+1}{-x^2+x+6}\ge0\)

5
NV
1 tháng 5 2019

\(A=\frac{2sinx.cosx+sinx}{1+2cos^2x-1+cosx}=\frac{sinx\left(2cosx+1\right)}{cosx\left(2cosx+1\right)}=\frac{sinx}{cosx}=tanx\)

\(B=\frac{cosa}{sina}\left(\frac{1+sin^2a}{cosa}-cosa\right)=\frac{cosa}{sina}\left(\frac{1+sin^2a-cos^2a}{cosa}\right)=\frac{cosa}{sina}.\frac{2sin^2a}{cosa}=2sina\)

\(C=\frac{1+cos2x+cosx+cos3x}{2cos^2x-1+cosx}=\frac{1+2cos^2x-1+2cos2x.cosx}{cos2x+cosx}=\frac{2cosx\left(cosx+cos2x\right)}{cos2x+cosx}=2cosx\)

\(D=\frac{2sinx.cosx.\left(-tanx\right)}{-tanx.sinx}-2cosx=2cosx-2cosx=0\)

NV
1 tháng 5 2019

\(E=cos^2x.cot^2x-cot^2x+cos^2x+2cos^2x+2sin^2x\)

\(E=cot^2x\left(cos^2x-1\right)+cos^2x+2=\frac{cos^2x}{sin^2x}\left(-sin^2x\right)+cos^2x+2=2\)

\(F=\frac{sin^2x\left(1+tan^2x\right)}{cos^2x\left(1+tan^2x\right)}=\frac{sin^2x}{cos^2x}=tan^2x\)

Câu G mẫu số có gì đó sai sai, sao lại là \(2sina-sina?\)

\(H=sin^4\left(\frac{\pi}{2}+a\right)-cos^4\left(\frac{3\pi}{2}-a\right)+1=cos^4a-sin^4a+1\)

\(=\left(cos^2a-sin^2a\right)\left(cos^2a+sin^2a\right)+1=cos^2a-\left(1-cos^2a\right)+1=2cos^2a\)

NV
29 tháng 5 2020

\(cot^2x-cos^2x=\frac{cos^2x}{sin^2x}-cos^2x=cos^2x\left(\frac{1}{sin^2x}-1\right)=\frac{cos^2x\left(1-sin^2x\right)}{sin^2x}\)

\(=cos^2x.\left(\frac{cos^2x}{sin^2x}\right)=cot^2x.cos^2x\)

\(\frac{cosx+sinx}{cosx-sinx}-\frac{cosx-sinx}{cosx+sinx}=\frac{\left(cosx+sinx\right)^2-\left(cosx-sinx\right)^2}{\left(cosx-sinx\right)\left(cosx+sinx\right)}\)

\(=\frac{cos^2x+sin^2x+2sinx.cosx-\left(cos^2x+sin^2x-2sinx.cosx\right)}{cos^2x-sin^2x}=\frac{4sinx.cosx}{cos2x}=\frac{2sin2x}{cos2x}=2tan2x\)

\(\frac{sin4x+cos2x}{1-cos4x+sin2x}=\frac{2sin2x.cos2x+cos2x}{1-\left(1-2sin^22x\right)+sin2x}=\frac{cos2x\left(2sin2x+1\right)}{sin2x\left(2sin2x+1\right)}=\frac{cos2x}{sin2x}=cot2x\)

\(A=sin^2x\left(sinx+cosx\right)+cos^2x\left(sinx+cosx\right)\)

\(=\left(sin^2x+cos^2x\right)\left(sinx+cosx\right)=sinx+cosx\)

\(B=\frac{sinx}{cosx}\left(\frac{1+cos^2x-sin^2x}{sinx}\right)=\frac{sinx}{cosx}\left(\frac{2cos^2x}{sinx}\right)=2cosx\)

NV
7 tháng 5 2019

\(A=\frac{cosx-cos3x+cos4x-cos2x}{sinx-sin3x+sin4x-sin2x}=\frac{2sin2x.sinx-2sin3x.sinx}{-2cos2x.sinx+2cos3x.sinx}\)

\(=\frac{sin2x-sin3x}{cos3x-cos2x}=\frac{-2cos\left(\frac{5x}{2}\right)sin\left(\frac{x}{2}\right)}{-2sin\left(\frac{5x}{2}\right)sin\left(\frac{x}{2}\right)}=cot\left(\frac{5x}{2}\right)\)

\(B=sinx+2cos2x.sinx+2cos4x.sinx+2cos6x.sinx\)

\(=sinx+sin3x-sinx+sin5x-sin3x+sin7x-sin5x\)

\(=sin7x\)