Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=5+5^2+5^3+5^4+...+5^8\)
\(=\left(5+5^2\right)+\left(5^3+5^4\right)+....+\left(5^7+5^8\right)\)
\(=\left(5+5^2\right)+5^2.\left(5+5^2\right)+....+5^6.\left(5+5^2\right)\)
\(=30+5^2.30+...+5^6.30\)
\(=30.\left(1+5^2+...+5^6\right)⋮30\)
Vậy C là bội của 30 (ĐPCM)
ta có: C = 5 + 5^2 + 5^3 + 5^4+...+ 5^8
C = (5+5^2) + (5^3+5^4) + ...+ (5^7+5^8)
C = 30 + 5^2.(5+5^2) + ...+ 5^6.(5+5^2)
C = 30 + 5^2 .30 + ...+ 5^6.30
C = 30.(1+5^2+...+5^6) chia hết cho 30
=> C là bội của 30
a) A = 5 + 52 + 53 + ... + 58
\(\Rightarrow\) 2A = 52 + 53 + 54 + ... + 59
\(\Rightarrow\) 2A - A = (52 + 53 + 54 + ... + 59) - (5 + 52 + 53 + ... + 58)
\(\Rightarrow\) A = 59 - 5 = 1 953 125 - 5 = 1 953 120
Vì 1 953 120 \(⋮\) 30 nên A \(⋮\) 30
\(\Rightarrow\) ĐPCT
Mình giải một dạng.Dạng còn lại mình chỉ hướng dẫn thôi.
a) \(A=3+3^2+3^3+...+3^{10}\) (đặt A)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^9+3^{10}\right)\)
\(=\left(3+3^2\right)+3^2\left(3+3^2\right)+...+3^8\left(3+3^2\right)\)
\(=11\left(1+3^2+...+3^8\right)⋮11^{\left(đpcm\right)}\)
b) Làm tương tự bằng cách gộp 3 số liên tiếp vào ngoặc
a) (3+32+33+34+35)+(36+37+38+39+310)
=3(1+3+32+33+34) + 36(1+3+32+33+34)
=3.121+36.121\(⋮\)11
55 - 54 + 53
= 53 ( 25 - 5 + 1 )
= 53. 21
Mà 21 ⋮ 7 ⇒ 55 - 54 + 53 ⋮ 7
Bài 1:
a) 1014049
b)1998^2 - (1998+2)(1998-2) = 1998^2 - (1998^2 - 4)
= 1998^2 - 1998^2 +4
= 4
Bài 2:
a) n thuộc -7;-6;-4;-3
b) n thuộc -7;-1;1;7
c) n thuộc -3;1;3;7
XIN LỖI VÌ MÌNH KHÔNG GHI CÁCH GIẢI
CHÚC BẠN HỌC TỐT
a) \(\overline{aaaaaa}=a.111111=a.3.37037\) \(⋮\)\(37037\)
b) Nhận thấy các hạng tử trong B đều chia hết cho 3 => B chia hết cho 3
\(B=3+3^3+3^5+3^7+...+3^{2017}+3^{2019}+3^{2021}\)
\(=\left(3+3^3+3^5\right)+\left(3^7+3^9+3^{11}\right)+....+\left(3^{2017}+3^{2019}+3^{2021}\right)\)
\(=3\left(1+3^2+3^4\right)+3^7\left(1+3^2+3^4\right)+...+3^{2017}\left(1+3^2+3^4\right)\)
\(=\left(1+3^2+3^4\right)\left(3+3^7+...+3^{2017}\right)\)
\(=91\left(3+3^7+....+3^{2017}\right)\)\(⋮\)\(91\)
mà (3;91) = 1
=> B chia hết cho 273
B chia hết cho 273
Còn câu a thì mình không biết nhé, xin lỗi bạn.
\(A=5+5^2+5^3+...+5^8\)
\(A=\left(5+5^2\right)+5^2\left(5+5^2\right)+...+5^6\left(5+5^2\right)\)
\(A=30+5^2.30+...+5^6.30\)
Vì 30\(⋮\)30
\(\Rightarrow A⋮30\)\(\Rightarrow A\in B\left(30\right)\)