K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2016

1.

Chứng minh

(a). Giả sử n là 1 số lẻ ta có ̃n+3 là 1 số chẵn và n + 6 là 1 số lẻ => (n +3).(n + 6) là 1 số chẵn. 
(b). Giả sử n là 1 số chẵn ta có n + 3 là 1 số lẻ và n + 6 là 1 số chẵn => (n + 3).(n + 6) là 1 số chẵn. 
(c). Với mọi số tự nhiên n ta có (n + 3).(n + 6) > 18. 
Từ (a),(b),(c) ta có thể kết luận rằng với mọi số tự nhiên n thì tích (n + 3).(n + 6) luôn chia hết cho 2.

2.

Nếu n = 2k thì n + 6 = 2k + 6 chia hết cho 2 
Nếu n = 2k + 1 thì n + 3 = 2k + 4 chia het cho 2 
Vậy (n+3) . (n+6) chia hết cho 2

14 tháng 7 2016

Với x lẻ thì x + 3 chẵn, tích ( x + 3 ) ( x + 6 ) là chẵn nên chia hết cho 2.

Với x chẵn thì x + 6 chẵn, tích ( x + 3 ) ( x + 6 ) là chẵn nên chia hết cho 2.

Vậy ( x + 3 ) ( x + 6 ) luôn chia hết cho 2 với mọi số tự nhiên x.

20 tháng 10 2017

1) +Với n là số chẵn => n+3 lẻ và n+6 chẵn. Vì 1 số chẵn và 1 số lẻ nhân với nhau tạo thành số chẵn hay tích đó chia hết cho 2 ( đpcm)

     +Với n là số lẻ => n+3 chẵn và n+6 lẻ ( tương tự câu trên)

2)Tg tự câu a

19 tháng 12 2021

1 + 1 = 

em can gap!!!

Nhanh e k cho

21 tháng 10 2015

2,

+ n chẵn

=> n(n+5) chẵn 

=> n(n+5) chia hết cho 2

+ n lẻ

Mà 5 lẻ

=> n+5 chẵn => chia hết cho 2

=> n(n+5) chia hết cho 2

KL: n(n+5) chia hết cho 2 vơi mọi n thuộc N

21 tháng 10 2015

3, 

A = n2+n+1 = n(n+1)+1

a, 

+ Nếu n chẵn

=> n(n+1) chẵn 

=> n(n+1) lẻ => ko chia hết cho 2

+ Nếu n lẻ

Mà 1 lẻ

=> n+1 chẵn

=> n(n+1) chẵn

=> n(n+1)+1 lẻ => ko chia hết cho 2

KL: A không chia hết cho 2 với mọi n thuộc N (Đpcm)


b, + Nếu n chia hết cho 5

=> n(n+1) chia hết cho 5

=> n(n+1)+1 chia 5 dư 1

+ Nếu n chia 5 dư 1

=> n+1 chia 5 dư 2

=> n(n+1) chia 5 dư 2

=> n(n+1)+1 chia 5 dư 3

+ Nếu n chia 5 dư 2

=> n+1 chia 5 dư 3

=> n(n+1) chia 5 dư 1

=> n(n+1)+1 chia 5 dư 2

+ Nếu n chia 5 dư 3

=> n+1 chia 5 dư 4

=> n(n+1) chia 5 dư 2

=> n(n+1)+1 chia 5 dư 3

+ Nếu n chia 5 dư 4

=> n+1 chia hết cho 5

=> n(n+1) chia hết cho 5

=> n(n+1)+1 chia 5 dư 1

KL: A không chia hết cho 5 với mọi n thuộc N (Đpcm)

15 tháng 10 2015

Trong một tích có một thừa số chẵn thì tích đấy chẵn

Giả sử n là số lẻ thì n+3 là số chẵn ( lẻ + lẻ = chẵn ) , suy ra tích là số chẵn

           n là số chẵn n+6 là số chẵn ( chẵn + chẵn = chẵn ) , suy ra tích là số chẵn 

Kết luận : tích (n+3)( n+6) luôn chia hết cho 2 với mọi số tự nhiên n

25 tháng 11 2015

+ Nếu n =2k

=> (n+3)(n+6) =(n+3)(2k+6) =2(n+3)(k+3) chia hết cho 2

+Nếu n =2k +1

 => (n+3)(n+6) = ( 2k+1+3)(n+6) =(2k+4)(n+6) =2(k+2)(n+6) chia hết cho2

=> (n+3)(n+6) luôn chia hết cho 2

 

25 tháng 11 2015

(n+3).(n+6)=A 
nếu n chia hết cho 2 suy ra (n+6) chia hết cho 2suy ra A chia hết cho 2 (1) 
nếu n không chia hết cho 2 (lẻ) suy ra (n+3) chia hết cho 2 suy ra A chia hết cho 2 (2) 
Từ (1) và (2) suy ra đpcm

6 tháng 10 2016

(n+3)(n+6) chia hết cho 2 <=> n(3+5)+n

                                       =n.8 +n

 Vì 8 chia hết cho 2 => n.8+n chia hết cho 2

 Vậy (n+3)(n+6) chia hết cho 2 , k cho mik nha

6 tháng 10 2016

Nếu n = 2k thì n + 6 = 2k + 6 chia hết cho 2 
Nếu n = 2k + 1 thì n + 3 = 2k + 4 chia het cho 2 
Vậy (n+3) . (n+6) chia hết cho 2

26 tháng 10 2018

n+3 phải chia hết cho 2

n+6 phải chia hết cho 2

26 tháng 10 2018

Nếu n là số  lẻ thì ta có:                      (n+3) là số lẻ

                                                          (n+6) là số chẵn

              Vậy ((n+3).(n+6))    chia hết cho 2

Còn nếu n là số chẵn thì ngược lại

2 tháng 8 2018

nếu n là số chẵn=> n+6 là số chẵn => n+6 chia hết cho 2=> (n+3).(n+6) chia hết cho 2

nếu n là số lẻ => n+3 là chẵn => n+3 chia hết cho 2=> (n+3).(n+6) chia hết cho 2

vây (n+3).(n+6) chia hết cho 2

k mk nha

2 tháng 8 2018

ta phân ra hai trường hợp.

TH1 n là số chẵn=> n+6 là số chẵn => n+6 chia hết cho 2=> (n+3).(n+6) chia hết cho 2

TH2 n là số lẻ => n+3 là chẵn => n+3 chia hết cho 2=> (n+3).(n+6) chia hết cho 2

Vây (n+3).(n+6) chia hết cho 2 với n thuộc N