Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) +Với n là số chẵn => n+3 lẻ và n+6 chẵn. Vì 1 số chẵn và 1 số lẻ nhân với nhau tạo thành số chẵn hay tích đó chia hết cho 2 ( đpcm)
+Với n là số lẻ => n+3 chẵn và n+6 lẻ ( tương tự câu trên)
2)Tg tự câu a
2,
+ n chẵn
=> n(n+5) chẵn
=> n(n+5) chia hết cho 2
+ n lẻ
Mà 5 lẻ
=> n+5 chẵn => chia hết cho 2
=> n(n+5) chia hết cho 2
KL: n(n+5) chia hết cho 2 vơi mọi n thuộc N
3,
A = n2+n+1 = n(n+1)+1
a,
+ Nếu n chẵn
=> n(n+1) chẵn
=> n(n+1) lẻ => ko chia hết cho 2
+ Nếu n lẻ
Mà 1 lẻ
=> n+1 chẵn
=> n(n+1) chẵn
=> n(n+1)+1 lẻ => ko chia hết cho 2
KL: A không chia hết cho 2 với mọi n thuộc N (Đpcm)
b, + Nếu n chia hết cho 5
=> n(n+1) chia hết cho 5
=> n(n+1)+1 chia 5 dư 1
+ Nếu n chia 5 dư 1
=> n+1 chia 5 dư 2
=> n(n+1) chia 5 dư 2
=> n(n+1)+1 chia 5 dư 3
+ Nếu n chia 5 dư 2
=> n+1 chia 5 dư 3
=> n(n+1) chia 5 dư 1
=> n(n+1)+1 chia 5 dư 2
+ Nếu n chia 5 dư 3
=> n+1 chia 5 dư 4
=> n(n+1) chia 5 dư 2
=> n(n+1)+1 chia 5 dư 3
+ Nếu n chia 5 dư 4
=> n+1 chia hết cho 5
=> n(n+1) chia hết cho 5
=> n(n+1)+1 chia 5 dư 1
KL: A không chia hết cho 5 với mọi n thuộc N (Đpcm)
Trong một tích có một thừa số chẵn thì tích đấy chẵn
Giả sử n là số lẻ thì n+3 là số chẵn ( lẻ + lẻ = chẵn ) , suy ra tích là số chẵn
n là số chẵn n+6 là số chẵn ( chẵn + chẵn = chẵn ) , suy ra tích là số chẵn
Kết luận : tích (n+3)( n+6) luôn chia hết cho 2 với mọi số tự nhiên n
+ Nếu n =2k
=> (n+3)(n+6) =(n+3)(2k+6) =2(n+3)(k+3) chia hết cho 2
+Nếu n =2k +1
=> (n+3)(n+6) = ( 2k+1+3)(n+6) =(2k+4)(n+6) =2(k+2)(n+6) chia hết cho2
=> (n+3)(n+6) luôn chia hết cho 2
(n+3).(n+6)=A
nếu n chia hết cho 2 suy ra (n+6) chia hết cho 2suy ra A chia hết cho 2 (1)
nếu n không chia hết cho 2 (lẻ) suy ra (n+3) chia hết cho 2 suy ra A chia hết cho 2 (2)
Từ (1) và (2) suy ra đpcm
(n+3)(n+6) chia hết cho 2 <=> n(3+5)+n
=n.8 +n
Vì 8 chia hết cho 2 => n.8+n chia hết cho 2
Vậy (n+3)(n+6) chia hết cho 2 , k cho mik nha
Nếu n = 2k thì n + 6 = 2k + 6 chia hết cho 2
Nếu n = 2k + 1 thì n + 3 = 2k + 4 chia het cho 2
Vậy (n+3) . (n+6) chia hết cho 2
Nếu n là số lẻ thì ta có: (n+3) là số lẻ
(n+6) là số chẵn
Vậy ((n+3).(n+6)) chia hết cho 2
Còn nếu n là số chẵn thì ngược lại
nếu n là số chẵn=> n+6 là số chẵn => n+6 chia hết cho 2=> (n+3).(n+6) chia hết cho 2
nếu n là số lẻ => n+3 là chẵn => n+3 chia hết cho 2=> (n+3).(n+6) chia hết cho 2
vây (n+3).(n+6) chia hết cho 2
k mk nha
ta phân ra hai trường hợp.
TH1 n là số chẵn=> n+6 là số chẵn => n+6 chia hết cho 2=> (n+3).(n+6) chia hết cho 2
TH2 n là số lẻ => n+3 là chẵn => n+3 chia hết cho 2=> (n+3).(n+6) chia hết cho 2
Vây (n+3).(n+6) chia hết cho 2 với n thuộc N
1.
Chứng minh
(a). Giả sử n là 1 số lẻ ta có ̃n+3 là 1 số chẵn và n + 6 là 1 số lẻ => (n +3).(n + 6) là 1 số chẵn.
(b). Giả sử n là 1 số chẵn ta có n + 3 là 1 số lẻ và n + 6 là 1 số chẵn => (n + 3).(n + 6) là 1 số chẵn.
(c). Với mọi số tự nhiên n ta có (n + 3).(n + 6) > 18.
Từ (a),(b),(c) ta có thể kết luận rằng với mọi số tự nhiên n thì tích (n + 3).(n + 6) luôn chia hết cho 2.
2.
Nếu n = 2k thì n + 6 = 2k + 6 chia hết cho 2
Nếu n = 2k + 1 thì n + 3 = 2k + 4 chia het cho 2
Vậy (n+3) . (n+6) chia hết cho 2
Với x lẻ thì x + 3 chẵn, tích ( x + 3 ) ( x + 6 ) là chẵn nên chia hết cho 2.
Với x chẵn thì x + 6 chẵn, tích ( x + 3 ) ( x + 6 ) là chẵn nên chia hết cho 2.
Vậy ( x + 3 ) ( x + 6 ) luôn chia hết cho 2 với mọi số tự nhiên x.