K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Gọi a=UCLN(5n+14;n+3)

\(\Leftrightarrow5n+14-5n-15⋮a\)

\(\Leftrightarrow-1⋮a\)

hay a=1

=>5n+14/n+3 là phân số tối giản

b: Gọi d=UCLN(3n-2;4n-3)

\(\Leftrightarrow4\left(3n-2\right)-3\left(4n-3\right)⋮d\)

\(\Leftrightarrow1⋮d\)

=>d=1

=>3n-2/4n-3 là phân số tối giản

17 tháng 7 2020

c) Gọi ƯCLN(4n + 3;5n+4) = d

=> \(\hept{\begin{cases}4n+3⋮d\\5n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(4n+3\right)⋮d\\4\left(5n+4\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}20n+15⋮d\\20n+16⋮d\end{cases}\Rightarrow}20n+16-\left(20n+15\right)⋮d\Rightarrow1⋮d}\)

=> d = 1

=> 4n + 3 ; 5n + 4 là 2 số nguyên tố cùng nhau 

=> \(\frac{4n+3}{5n+4}\)là phân số tối giản

d) Gọi ƯCLN(n+1;2n + 3) = d

=> \(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}\Rightarrow}2n+3-\left(2n+2\right)⋮d\Rightarrow1⋮d\Rightarrow d=1}\)

=> n + 1 ; 2n + 3 là 2 số nguyên tố cùng nhau

=> \(\frac{n+1}{2n+3}\)là phân số tối giản

f)  Gọi ƯCLN(3n + 2;5n + 3) = d

=> \(\hept{\begin{cases}3n+2⋮d\\5n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(3n+2\right)⋮d\\3\left(5n+3\right)⋮d\end{cases}\Rightarrow}\begin{cases}15n+10⋮d\\15n+9⋮d\end{cases}\Rightarrow15n+10-\left(15n+9\right)⋮d\Rightarrow1⋮d}\)

=> d = 1

=> 3n + 2 ; 5n + 3 là 2 số nguyên tố cùng nhau 

=> \(\frac{3n+2}{5n+3}\)là phân số tối giản

17 tháng 7 2020

a) Gọi ƯCLN(n + 3;n + 4) = d

=> \(\hept{\begin{cases}n+3⋮d\\n+4⋮d\end{cases}\Rightarrow n+4-\left(n+3\right)⋮d\Rightarrow1⋮d\Rightarrow d=1}\)

=> n + 3 ; n + 4 là 2 số nguyên tố cùng nhau

=> \(\frac{n+3}{n+4}\)là phân số tối giản

b) Gọi ƯCLN(3n + 3 ; 9n + 8) = d

Ta có : \(\hept{\begin{cases}3n+3⋮d\\9n+8⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(3n+3\right)⋮d\\9n+8⋮d\end{cases}}\Rightarrow\hept{\begin{cases}9n+9⋮d\\9n+8⋮d\end{cases}}\Rightarrow9n+9-\left(9n+8\right)⋮d\Rightarrow1⋮d\Rightarrow d=1}\)

=> 3n + 3 ; 9n + 8 là 2 số nguyên tố cùng nhau

=> \(\frac{3n+3}{9n+8}\)phân số tối giản

28 tháng 1 2022

Gọi Ư(n+1;2n+3) = d ( \(d\in\)N*) 

\(n+1=2n+2\left(1\right);2n+3\left(2\right)\)

Lấy (2 ) - (1) ta được : \(2n+3-2n+2=1⋮d\Rightarrow d=1\)

Vậy ta có đpcm 

Gọi Ư\(\left(3n+2;5n+3\right)=d\)( d \(\in\)N*)

\(3n+2=15n+10\left(1\right);5n+3=15n+9\left(2\right)\)

Lấy (!) - (2) ta được : \(15n+10-15n-9=1⋮d\Rightarrow d=1\)

Vậy ta có đpcm 

28 tháng 1 2022

a) Gọi \(d\) là UCLN \(\left(n+1,2n+3\right)\left(d\in N\right)\)

Ta có : \(\left[{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\)

\(\Rightarrow2n+3-\left(2n+2\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\left(đpcm\right)\)

b) Gọi \(d\) là \(UCLN\left(2n+3,4n+8\right)\left(d\in N\right)\)

Ta có : \(\left[{}\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}4n+6⋮d\\4n+8⋮d\end{matrix}\right.\)

\(\Rightarrow4n+8-\left(4n+6\right)⋮d\)

\(\Rightarrow2⋮d\)

\(\Rightarrow d\in\left\{1;2\right\}\)

Mà 2n+3 là số lẻ nên

\(\Rightarrow d=1\left(đpcm\right)\)

c) Gọi \(d\) là \(UCLN\left(3n+2;5n+3\right)\left(d\in N\right)\)

Ta có : \(\left[{}\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}15n+10⋮d\\15n+9⋮d\end{matrix}\right.\)

\(\Rightarrow15n+10-\left(15n+9\right)⋮d\)

\(\Rightarrow d=1\left(đpcm\right)\)

12 tháng 4 2023

Gọi Ư( n+1; 2 n+3 ) = d ( d∈N* )

n +1 = 2n + 2 (1) ; 2n+3*)   (2)

Lấy (2 ) - (1) ta được : 2n + 3 - 2n + 2 = 1:d => d =1

vậy ta có đpcm 

gọi Ư ( 3n + 2 ; 5n + 3 ) = d ( d∈N* )

3n +2 = 15 n + 10 (1)  ; 5n + 3 =15n + 9 (2)

lấy (!) - (2)  ta được  15n + 10 - 15n - 9 = 1:d => d = 1

Vậy ta có đpcm 

a: Gọi d=UCLN(4n+1;6n+1)

\(\Leftrightarrow3\left(4n+1\right)-2\left(6n+1\right)⋮d\)

\(\Leftrightarrow1⋮d\)

=>d=1

=>4n+1/6n+1 là phân số tối giản

b: Gọi a=UCLN(5n+3;3n+2)

\(\Leftrightarrow3\left(5n+3\right)-5\left(3n+2\right)⋮a\)

\(\Leftrightarrow-1⋮a\)

=>a=1

=>5n+3/3n+2 là phân số tối giản

2 tháng 5 2016

Gọi ƯCLN(3n + 2, 5n + 3) = d (d thuộc N*)

Ta có:

3n + 2 chia hết cho d

5n + 3 chia hết cho d

<=> 3(3n + 2) chia hết cho d = 9n + 6 chia hết cho d

<=> 2(5n +3) chia hết cho d = 10n + 6 chia hết cho d

=> 10n + 6 - 9n + 6 chia hết cho d = 1 chia hết cho d

=> d = 1

<=> 3n + 2 và 5n + 3 là hai số nguyên tố cùng nhau.

=> Phân số \(\frac{3n+2}{5n+3}\)  là phân số tối giản.

N
2 tháng 5 2016

gọi d là ưcln của 3n+2 và 5n+3, ta có

﴾3n+2﴿‐﴾5n+3﴿ chia hết cho d

5﴾3n+2﴿‐3﴾5n+3﴿ chia hết cho d 

15n+10‐15n‐9 chia hết cho d

15n‐15n+10‐9 chia hết cho d

1 chia hết cho d => d=1

vậy 3n+2/5n+3 là 2 phân số tối giản