Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gỉa sử P(x) có một nghiệm nguyên là \(x_0\left(x_0\ne0\right)\)
Ta có \(P\left(x\right)=a_nx_0^n+a_{n-1}x_0^{n-1}+...+a_1x_0+a_0=0.\)
Như vậy \(P\left(x_0\right)=0⋮x_0\)và các số hạng \(a_nx_0^n+a_{n-1}x_0^{n-1}+...+a_1x_0\)đều chia hết cho \(x_0\), suy ra \(a_0\)cũng phải chia hết \(x_0\)tức \(x_0\)là ước của \(a_0\)
Tổng các hệ số của các hạng tử của đa thức là:
f(x)= 11994.(-1)1995=-1
Lời giải:
Không mất tổng quát, giả sử n chẵn.
Khi đó các hệ số bậc chẵn là: \(a_n, a_{n-2},...,a_0\), và các hệ số bậc lẻ là \(a_{n-1}, a_{n-3},...,a_1\). Theo bài ra ta có:
\(a_n+a_{n-2}+...+a_0=a_{n-1}+a_{n-3}+...+a_1(*)\)
Ta thấy \((-1)^k=\left\{\begin{matrix} \text{1 nếu k chẵn}\\ \text{-1 nếu k lẻ}\end{matrix}\right.\). Do đó:
\(F(x)=a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0x^0\)
\(\Rightarrow F(-1)=a_n(-1)^n+a_{n-1}(-1)^{n-1}+...+a_1(-1)+a_0\)
\(=a_n+(-1)a_{n-1}+a_{n-2}+(-1)a_{n-3}+....+(-1)a_1+a_0\)
\(=(a_n+a_{n-2}+...+a_0)-(a_{n-1}+a_{n-3}+...+a_1)\)
\(=0\) (do $(*)$)
Vậy \(F(-1)=0\), tức là $x=-1$ là nghiệm của đa thức $F(x)$
Cảm ơn bạn nhiều