Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 3 STN liên tiếp là : a,a+1,a=2(a thuộc N )
Khi chia a cho 3 thì a sẽ có dạng 3k,3k+1,3k+2(k thuộc N )
+ Nếu a=3k thì a : 3 ( thay : cho chia hết )
a+1 :/ 3 ( thay :/ cho ko chia hết )
a+2:/3
+Nếu a=3k+1 thì a:/ 3
a+1 =3k+1+1=3k+2 :/ 3
a+2=3k+2+1= 3k+3:3
+ Nếu a=3k+2 thì a:/3
a=3k+1=3k+1+2=3k+3:3
a=3k+2=3k+2+2=3k+a:/3
Vậy ...................................
Nhớ câu kia cũng tương tự vậy mà làm
Gọi 2 số chẵn lên tiếp là 2k và 2k + 2(k thuộc N).
Vì đây là 2 số chẵn nên nó không thể chia 4 dư 1 hoặc 3. Vậy 2 số này chỉ xảy ra 2 trường hợp là chia hết hoặc dư 2.
Nếu 2k chia hết cho 4 thì đã chứng minh được có 1 số chia hết cho 4 rồi. (1)
Nếu 2k chia 4 dư 2 thì 2k + 2 chia hết cho 4. (2)
Từ (1) và (2), ta có 2 số chẵn liên tiếp có 1 và chỉ có 1 số chia hết cho 4
Tick cho mình nha
a) abab = a.1000 + b.100 + a.10 + b
= a.1010 + b.101 = ab.1111
vì 1111 chia hết cho 101 suy ra abab là bội của 101
b) aaabbb = a.100000 + a.10000 + a.1000 + b.100 + b.10 + b
= a.111000 + b.111
= ab.111111
vì 111111 chia hết cho 37 suy ra 37 là ước của aaabbb
bài còn lại mình làm cho bạn sau nha, k mình nhé
3 số tự nhiên liên tiếp la x;x+1;x+2
Giả sử x chia hết cho 3 thì => ĐPCM
Giả sử x không chia hết cho 3 tức là x chia 3 dư 1 hoặc 2. Vậy x+1 hoặc x+2 sẽ chia hết cho 3; khi đó 2 số tự nhiên liên tiếp còn lại sẽ có 1 trong 2 số chia hết cho 3.
Tích 2 STN liên tiếp :
a ( a + 1 )
= a ( 1 + 1 )
= a . 2
Là số chẵn
Gọi 2 số tự nhiên liên tiếp đó lần lượt là a; a+1
Gọi UCLN(a;a+1)=d
Ta có:
(a+1)-a chia hết d
=>1 chia hết d
=>d=1
Vậy ta có 2 số tự nhiên liên tiếp có ước chung là 1
Giải:
Gọi 2 số tự nhiên liên tiếp đó là a, a + 1
Đặt \(d=UCLN\left(a;a+1\right)\)
Ta có: \(a⋮d\)
\(a+1⋮d\)
\(\Rightarrow a+1-a⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\Rightarrow UCLN\left(a;a+1\right)=1\)
\(\RightarrowƯC\left(a;a+1\right)=1\)
Vậy ước chung của 2 số tự nhiên liên tiếp là 1
gọi 2 số chẵn tự nhiên liên tiếp là a,a+2
nếu a chia hết cho 4 thì bài toán dc giải
a=4k+2 thì 4+2=4k+4 chia hết cho 4
gọi n là tn số chẵn thì
nếu \(n:4\)dư 2 thì n +2 chia hết cho 4
còn n+2 chia 4 dư 2 thì n chia hết cho 4
Gọi hai số chẵn liên tiếp là 2k;2k+2
Gọi d là UCLN(2k;2k+2)
\(\Leftrightarrow2k+2-2k⋮d\)
\(\Leftrightarrow2⋮d\)
=>UCLN(2k;2k+2)=2
=>UC(2k+2;2k)={1;-1;2;-2}