Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
a) 1+5+5^2+5^3+....+5^101
=(1+5)+(5^2+5^3)+....+(5^100+5^101)
=6+5^2.(1+5)+...+5^100(1+5)
=6+5^2.6+...+5^100.6 chia hết cho 6 , vì mỗi số hạng đều chia hết cho 6
b) 2+2^2+2^3+...+2^2016
=(2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+1^10)+....+(2^2012+2^2013+2^2014+2^2015+2^2016)
=2.31+2^6.31+...+2^2012.31 chia hết cho 31
Tương tự như câu a lên mk rút gọn
2) còn bài a kì quá abc deg là sao nhỉ
b) abc chia hết cho 8 nên a ; b hoặc c chia hết cho 8
bạn nghĩ thử đi bài 2b dễ lắm nếu ko bt thì hỏi lại
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
a) A=5(1+5)+53(1+5)+...+5199(1+5)
=(1+5)(5+53+....+5199) chia hết cho 6
b) A:31 dư 30 hay A-30 chia hết cho 31
Ta có A=5(1+5+52)+54(1+5+52)+57(1+5+52)+.....+598(1+5+52)
31(5+54+57+...+599) chia hết cho 31. Nên A chia cho 31 không dư
Ra A= 5^11-5^3
Vì 5^11chia hết 125
5^3 chia hết cho125
=> 5^11-5^3 chia hết cho125
P = 1 + 5 + 52 + 53 + 54 + ..... + 52016 + 52017
= ( 1 + 5 ) + ( 52 + 53 ) + ..... + ( 52016 + 52017 )
= 6 + 52 . ( 1 + 5 ) + ..... + 52016 . ( 1 + 5 )
= 6.1 + 52 . 6 + .... + 52016 . 6 \(⋮\)6
Vậy P \(⋮\)6
Ta có:
\(P=1+5+5^2+5^3+5^4+...+5^{2016}+5^{2017}\)
\(P=\left(1+5\right)+\left(5^2+5^3\right)+...+\left(5^{2016}+5^{2017}\right)\)
\(P=1\cdot\left(1+5\right)+5^2\cdot\left(1+5\right)+...+5^{2016}\cdot\left(1+5\right)\)
\(P=1\cdot6+5^2\cdot6+...+5^{2016}\cdot6\\ ⋮6\)
Suy ra \(P⋮6\)
Vậy \(P⋮6\)
hộ mk nha bn
@@@@@@@@@@
5+52+53+...+530=5(1+5)+53(1+5) +55(1+5)+...+529(1+5)=5.6+53.6+...+529.6
vì 5a.6 chia hết cho 6 nên ..... chia hết cho 6
5+52+53+...+530
=(5+52)+(53+54)+...+(529+530)
=5.(1+5)+53.(1+5)+...+529.(1+5)
=5.6+53.6+...+529.6
=6.(5+53+...+529) chia hết cho 6
3+32+33+...+320
=(3+32)+(33+34)+...+(319+320)
=3.(1+3)+33.(1+3)+...+319.(1+3)
=3.4+33.4+...+319.4
=4.(3+33+...+319) chia hết cho 4
Chứng tỏ rằng 1+5+52+53+54+55 chia hết cho 6
Bài làm
1+5+52+53+54+55
= ( 1 + 5 ) + ( 52+53 ) + ( 54+55 )
= 6 + 52 . ( 1 +5 ) + 54 . ( 1 + 5 )
= 6 + 52 . 6 + 54 . 6
\(\Rightarrow\)1+5+52+53+54+55 \(⋮\)6
chỉ cần tính đc 1 số chia hết cho 6 là tất ca3chia hết cho 6