K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1. Chứng minh các bất đẳng thức:a) (a + b)2 ≤ 2(a2 + b2)b) (a + b + c)2 ≤ 3(a2 + b2 + c2)c) (a1 + a2 + ….. + an)2 ≤ n(a12 + a22 + ….. + an2).Câu 2. Cho a3 + b3 = 2. Chứng minh rằng a + b ≤ 2.Câu 3. Chứng minh rằng: [x] + [y] ≤ [x + y].Câu 4. Tìm giá trị lớn nhất của biểu thức: Câu 5. Tìm giá trị nhỏ nhất của:  với x, y, z > 0.Câu 6. Tìm giá trị nhỏ nhất của: A = x2 + y2 biết x + y = 4.Câu...
Đọc tiếp

Câu 1. Chứng minh các bất đẳng thức:

a) (a + b)2 ≤ 2(a2 + b2)

b) (a + b + c)2 ≤ 3(a2 + b2 + c2)

c) (a1 + a2 + ….. + an)2 ≤ n(a12 + a22 + ….. + an2).

Câu 2. Cho a3 + b3 = 2. Chứng minh rằng a + b ≤ 2.

Câu 3. Chứng minh rằng: [x] + [y] ≤ [x + y].

Câu 4. Tìm giá trị lớn nhất của biểu thức: 

Câu 5. Tìm giá trị nhỏ nhất của:  với x, y, z > 0.

Câu 6. Tìm giá trị nhỏ nhất của: A = x2 + y2 biết x + y = 4.

Câu 7. Tìm giá trị lớn nhất của: A = xyz(x + y)(y + z)(z + x) với x, y, z ≥ 0; x + y + z = 1.

Câu 8. Xét xem các số a và b có thể là số vô tỉ không nếu:

a) ab và a/b là số vô tỉ.

b) a + b và a/b là số hữu tỉ (a + b ≠0)

c) a + b, a2 và b2 là số hữu tỉ (a + b ≠0)

Câu 9. Cho a, b, c > 0. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)

Câu 10. Cho a, b, c, d > 0. Chứng minh:

Câu 11. Chứng minh rằng [2x] bằng 2[x] hoặc 2[x] + 1

Câu 12. Cho số nguyên dương a. Xét các số có dạng: a + 15 ; a + 30 ; a + 45 ; … ; a + 15n. Chứng minh rằng trong các số đó, tồn tại hai số mà hai chữ số đầu tiên là 96.

0
Câu 1. Chứng minh √7 là số vô tỉ.Câu 2.a) Chứng minh: (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2)b) Chứng minh bất dẳng thức Bunhiacôpxki: (ac + bd)2 ≤ (a2 + b2)(c2 + d2)Câu 3. Cho x + y = 2. Tìm giá trị nhỏ nhất của biểu thức: S = x2 + y2.Câu 4.a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy: b) Cho a, b, c > 0. Chứng minh rằng: c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.Câu...
Đọc tiếp

Câu 1. Chứng minh √7 là số vô tỉ.

Câu 2.

a) Chứng minh: (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2)

b) Chứng minh bất dẳng thức Bunhiacôpxki: (ac + bd)2 ≤ (a2 + b2)(c2 + d2)

Câu 3. Cho x + y = 2. Tìm giá trị nhỏ nhất của biểu thức: S = x2 + y2.

Câu 4.

a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy: 

b) Cho a, b, c > 0. Chứng minh rằng: 

c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.

Câu 5. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức: M = a3 + b3.

Câu 6. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức: N = a + b.

Câu 7. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)

Câu 8. Tìm liên hệ giữa các số a và b biết rằng: |a + b| > |a - b|

Câu 9.

a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a

b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8

Câu 10. Chứng minh các bất đẳng thức:

a) (a + b)2 ≤ 2(a2 + b2)

b) (a + b + c)2 ≤ 3(a2 + b2 + c2)

Câu 11. Tìm các giá trị của x sao cho:

a) |2x – 3| = |1 – x|

b) x2 – 4x ≤ 5

c) 2x(2x – 1) ≤ 2x – 1.

Câu 12. Tìm các số a, b, c, d biết rằng: a2 + b2 + c2 + d2 = a(b + c + d)

Câu 13. Cho biểu thức M = a2 + ab + b2 – 3a – 3b + 2001. Với giá trị nào của a và b thì M đạt giá trị nhỏ nhất? Tìm giá trị nhỏ nhất đó.

Câu 14. Cho biểu thức P = x2 + xy + y2 – 3(x + y) + 3. Chứng minh rằng giá trị nhỏ nhất của P bằng 0.

Câu 15. Chứng minh rằng không có giá trị nào của x, y, z thỏa mãn đẳng thức sau:

x2 + 4y2 + z2 – 2a + 8y – 6z + 15 = 0

3
16 tháng 1 2016

mình có phần của mấy bài tập này

mình tải về rùi mà ko nhớ link 

có đáp án nữa

 

16 tháng 1 2016

chuyen-de-BD-HSG-Toan9.pdf

 

17 tháng 7 2015

G/s căn 7 là số hữu tỉ => căn 7 viết dưới dạng phân số tói giản a/b ( trong đó UCLN (a,b) = 1)

=> căn 7 = a/b => 7 = a^2 / b^2 => 7b^2 = a^2 => a^2 chia hết cho 7 => a chia hết cho 7 (1)

DẶt a = 7t thay a =7t vào a^2 = 7b^2 

 => 49 t^2 = 7b^2 => b^2 = 7 t^2 => b^2 chia hết cho 7 => b chia hết cho 7 (2)

Từ (1) và (2) => a,b có một ước chung là 7 trái với g/s UCLN (a,b) = 1 

Vậy căn 7 là số vô tỉ 

19 tháng 11 2015

bài này giải thế này nhé

Áp dụng bất đẳng thức 

\(a^3+b^3\ge ab\left(a+b\right)\)\(a^3+b^3+abc\ge ab\left(a+b\right)+abc=ab\left(a+b+c\right)\)