\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\l...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2018

\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right).....\left(1-\frac{1}{2017}\right)\left(1-\frac{1}{2018}\right)< 1\)

\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot....\cdot\frac{2016}{2017}\cdot\frac{2017}{2018}\)

\(=\frac{1\cdot2\cdot3\cdot4\cdot....\cdot2016\cdot2017}{2\cdot3\cdot4\cdot5\cdot....\cdot2017\cdot2018}\)

\(=\frac{1}{2018}< 1\)

\(\Rightarrow\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right).....\left(1-\frac{1}{2017}\right)\left(1-\frac{1}{2018}\right)< 1\left(đpcm\right)\)

7 tháng 5 2018

đung 100% đấy kết bạn nhé

Áp dụng bất đẳng thức Cauchy ta được :

\(\frac{1}{5}+\left(\frac{1}{5}\right)^2+\left(\frac{1}{5}\right)^3+.....+\left(\frac{1}{5}\right)^{50}\ge50\sqrt[50]{\frac{1}{5}.\left(\frac{1}{5}\right)^2.......\left(\frac{1}{5}\right)^{50}}\left(1\right)\)

\(=50\sqrt[50]{\frac{1}{......}}\)

Thấy điều hiển nhiên : \(\frac{1}{5}.\left(\frac{1}{5}\right)^2.....\left(\frac{1}{5}\right)^{50}< \frac{1}{4}\Rightarrow\frac{1}{.....}< \frac{1}{4}\Rightarrow50\sqrt[50]{\frac{1}{......}}< 4\left(2\right)\)

Từ 1 và 2 => \(\frac{1}{5}+\left(\frac{1}{5}\right)^2+....+\left(\frac{1}{5}\right)^5< \frac{1}{4}\left(đpcm\right)\)

25 tháng 4 2018

\(A=\left(1-\frac{2}{5}\right)\left(1-\frac{2}{7}\right)\left(1-\frac{2}{9}\right)\cdot\cdot\cdot\left(1-\frac{2}{2011}\right)\)

\(A=\left(\frac{5-2}{5}\right)\left(\frac{7-2}{7}\right)\left(\frac{9-2}{9}\right)\cdot\cdot\cdot\left(\frac{2011-2}{2011}\right)\)

\(A=\frac{3}{5}\cdot\frac{5}{7}\cdot\frac{7}{9}\cdot\cdot\cdot\frac{2009}{2011}\)(các thừa số trên tử giống dưới mẫu mình lượt bỏ đi nhé!)

\(A=\frac{3}{2011}\)

25 tháng 4 2018

\(A=\left(1-\frac{2}{5}\right)\left(1-\frac{2}{7}\right)\left(1-\frac{2}{9}\right)...\left(1-\frac{2}{2011}\right)\)

\(=\frac{3}{5}.\frac{5}{7}.\frac{7}{9}...\frac{2009}{2011}\)

\(=\frac{3}{2011}\)