\(\frac{202}{1.3}\)+\(\frac{202}{3.5}\)+
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2017

\(\frac{202}{1.3}+\frac{202}{3.5}+\frac{202}{5.7}+...+\frac{202}{99.101}\)

\(=202\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\right)\)

\(=202.\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(=101\left(1-\frac{1}{101}\right)\)

\(=101.\frac{100}{101}\)

\(=100=10^2\Rightarrowđpcm\)

16 tháng 4 2017

tk ủng hộ mk nha mọi người

16 tháng 4 2017

Ta có: \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2011}-\frac{1}{2012}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2011}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2012}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2012}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1006}\right)\)

\(=\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2012}\)   (ĐPCM)

23 tháng 1 2017

a, \(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\)

=2.(\(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{99.101}\))

=\(2.\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)

=\(\frac{2}{2}.\left(1-\frac{1}{101}\right)\)

\(=\frac{100}{101}\)

b, \(\frac{5}{1.3}+\frac{5}{3.5}+...+\frac{5}{99.101}\)

=\(5.\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{99.101}\right)\)

=\(5.\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(=\frac{5}{2}.\left(1-\frac{1}{101}\right)\)

=\(\frac{250}{101}\)

\(=\frac{5}{2}.\frac{100}{101}\)

3 tháng 5 2019

a,21.321.3+23.523.5+25.725.7+....+299.101

=>\(\frac{1}{1}-\frac{1}{3}+\frac{1}{5}-\frac{1}{5}+....+\frac{1}{99}-\frac{1}{101}\)

=>\(\frac{1}{1}-\frac{1}{101}\)

=>\(\frac{100}{101}\)

b,

51.351.3+53.553.5+55.755.7+....+599.101

=>\(\frac{5}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+....+\frac{2}{99.101}\right)\)

=>\(\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{99}-\frac{1}{101}\right)\)

=>\(\frac{5}{2}\left(\frac{1}{1}-\frac{1}{101}\right)\)

=>\(\frac{5}{2}.\frac{100}{101}\)

=>\(\frac{250}{101}\)

9 tháng 5 2018

a/\(\frac{\left(2^3.5.7\right).\left(5^2.7^3\right)}{\left(2.5.7^2\right)^2}\)

=\(\frac{2^3.5^3.7^4}{2^2.5^2.7^4}\)

=2.5

=10

29 tháng 8 2016

A = 1/1.3 + 1/3.5 + 1/5.7 +........+ 1/1999.2001
2.A = 2/1.3 + 2/3.5 + 2/5.7 +........+ 2/1999.2001
2.A = 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ..... + 1/1999 - 1/2001 
2.A = 1 - 1/2001 

2.A = 2000/2001

Vậy A =1000/2001

B = 1/3.5 + 1/5.7 + 1/7.9 +........+ 1/99.101
2.A = 2/3.5 + 2/5.7 + 2/7.9 +........+ 2/99.101
2.A = 1/3 - 1/5 + 1/5 - 1/7 + ..... + 1/99 - 1/101 
2.A = 1/3 - 1/101 = 98/303 
Vậy A =49/303

29 tháng 8 2016

\(A=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{1999.2001}\)

\(2A=\frac{2}{1.3}+\frac{2}{3.5}+....+\frac{2}{1999.2001}\)

\(2A=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{1999}-\frac{1}{2001}\)

\(2A=\frac{1}{1}-\frac{1}{2001}=\frac{2000}{2001}\)

\(A=\frac{2000}{2001}.\frac{1}{2}=\frac{1000}{2001}\)

8 tháng 6 2017

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\)

Đặt A = \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\)

\(2A=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\)

\(2A=\frac{1}{1}-\frac{1}{101}\)

\(2A=\frac{100}{101}\)

\(\Rightarrow A=\frac{100}{101}\div2\)

\(\Rightarrow A=\frac{50}{101}\)

8 tháng 6 2017

đề 

sai r bn ak

25 tháng 4 2017

Can' t  Solve 

28 tháng 4 2017

ko sao