\(C^k_{2001}+C^{k+1}_{2001}\le C^{1000}_{2001}+C^{1001}_{2001}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có công thức Pascal: \(C^m_n+C^{m+1}_n=C^{m+1}_{n+1}\)

Áp dụng vào biểu thức đề cho, ta được: \(C^{k+1}_{2002}\le C^{1001}_{2002}\)

Điều này đúng với mọi (k+1) đi từ 1 đến 2001 (Ta có thể dễ dàng nhận ra điều này khi nhìn vào tam giác Pascal để nhận xét rằng hệ số ngay chính giữa luôn lớn nhất)

Chứng minh: Xét \(C^{k+1}_{2002}-C^k_{2002}=\frac{2002!}{\left(2002-k-1\right)!.\left(k+1\right)!}-\frac{2002!}{\left(2002-k!\right).k!}\)

\(=\frac{2002!.\left(2002-k\right)}{\left(2002-k\right)!.\left(k+1\right)!}-\frac{2002!.\left(k+1\right)}{\left(2002-k\right)!.\left(k+1\right)!}=\frac{2002!}{\left(2002-k\right)!.\left(k+1!\right)}\left(2001-2k\right)\)

+) \(k< 1000,5\Rightarrow2001-2k>0\Rightarrow C^{k+1}_{2002}-C^k_{2002}>0\Rightarrow C^{k+1}_{2002}>C^k_{2002}\)

+) \(k>1000,5\Rightarrow2001-2k< 0\Rightarrow C^{k+1}_{2002}-C^k_{2002}< 0\Rightarrow C^{k+1}_{2002}< C^k_{2002}\)

Vậy dãy số gồm các số hạng có dạng \(C_{2002}^{k+1}\)sẽ tăng dần khi k đi từ 1 tới 1001,5 và giảm dần khi k đi từ 1001,5 tới 2001.

Vậy \(C_{2002}^{k+1}\)lớn nhất khi \(k+1=1001\)---> ĐPCM

18 tháng 5 2017

Ta có :

\(C^{k+1}_{n+1}=C^k_n+C_n^{k+1}\)

\(C^{k+1}_n=C^k_{n-1}+C_{n-1}^{k+1}\)

...........

\(C^{k+1}_{k+2}=C^k_{k+1}+C_{k+1}^{k+1}\)

Từ đó :

\(C^{k+1}_{n+1}=C^k_n+C_{n-1}^k+....C^k_{k+1}+C^{k+1}_{k+1}\)

= \(C^k_n+C_{n-1}^k+....+C^k_{k+1}+C^k_k\)

NV
19 tháng 10 2019

\(tanx=tan\alpha\Rightarrow x=\alpha+k\pi\)

NV
19 tháng 10 2019

ĐKXĐ: \(cos\left(x+\frac{\pi}{3}\right)\ne0\Rightarrow x+\frac{\pi}{3}\ne\frac{\pi}{2}+k\pi\)

\(\Rightarrow x\ne\frac{\pi}{6}+k\pi\)

\(\Rightarrow D=R\backslash\left\{\frac{\pi}{6}+k\pi;k\in Z\right\}\)

19 tháng 10 2019

tan chứ đâu phải cos đâu bạn

NV
19 tháng 6 2019

\(\Leftrightarrow\frac{1}{2}sinx.sin2x=0\Rightarrow sin2x=0\Rightarrow2x=k\pi\Rightarrow x=\frac{k\pi}{2}\)

26 tháng 9 2020

Chưa học quy nạp thì sao bạn

26 tháng 9 2020

Phạm Dương Ngọc Nhi thế thì bạn học pp này đi. Cái pp này giúp cm nhiều bài một cách dễ dàng

19 tháng 7 2019

trả lời giúp mình đi các bạn

NV
19 tháng 6 2019

\(sin\left(x+\frac{\pi}{6}\right)=1\Rightarrow x+\frac{\pi}{6}=\frac{\pi}{2}+k2\pi\Rightarrow x=\frac{\pi}{3}+k2\pi\)

19 tháng 7 2019
Điều kiện: \(\left\{ \begin{array}{l}\cos 3x \ne 0\\\sin 2x \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ne \dfrac{\pi }{6} + k\dfrac{\pi }{3}\\x \ne \dfrac{{k\pi }}{2}\end{array} \right.,k \in \mathbb{Z}.\)
Phương trình \(\tan 3x.\cot 2x = 1\)
\(\Leftrightarrow \tan 3x = \dfrac{1}{{\cot 2x}}\\ \Leftrightarrow \tan 3x = \tan 2x\\ \Leftrightarrow 3x = 2x + k\pi\)
\(\Leftrightarrow x = k\pi\) loại do điều kiện \(x \ne \dfrac{{k\pi }}{2}.\) => Chọn D