Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: a) Ta có: \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)
\(=x^2+2x+y^2-2y-2xy+37\)
\(=\left(x^2-2xy+y^2\right)+\left(2x-2y\right)+37\)
\(=\left(x-y\right)^2+2\left(x-y\right)+37\)
\(=7^2+2.7+37\) (Vì \(x-y=7\))
\(=100\)
Vậy \(A=100\)
b) Ta có: \(B=x^2+4y^2-2x+10+4xy-4y\)
\(=\left(x^2+4xy+4y^2\right)-\left(2x+4y\right)+10\)
\(=\left(x+2y\right)^2-2\left(x+2y\right)+10\)
\(=5^2-2.5+10\)
\(=25\)
Vậy \(B=25\)
c) Ta có : \(C=\left(x-y\right)^2\)
\(=x^2-2xy+y^2\)
\(=\left(x^2+y^2\right)-2xy\)
\(=26-2.5\) (Vì \(x^2+y^2=26\) ; \(xy=5\))
\(=16\)
Vậy \(C=16\)
2: a) \(\left(x+y\right)^2-y^2=x^2+2xy+y^2-y^2\)
\(=x^2+2xy\)
\(=x\left(x+2y\right)\) \(\left(dpcm\right)\)
b) \(\left(x^2+y^2\right)^2-2xy^2=\left(x^2-2xy+y^2\right)\left(x^2+2xy+y^2\right)\)
\(=\left(x-y\right)^2\left(x+y\right)^2\) \(\left(dpcm\right)\)
c) \(\left(x+y\right)^2=x^2+2xy+y^2\)
\(=\left(x^2-2xy+y^2\right)+4xy\)
\(=\left(x-y\right)^2+4xy\) \(\left(dpcm\right)\)
Chúc bn học tốt ✔✔✔
a)A=x3+x2y+y2x+y3+2x2y+2xy2
=x3+3x2y+3xy2+y3
A=(x+y)3
b)=3x2+2x+(x2+2x+1)-(4x2-25)=12
3x2+2x+x2+2x+1-4x2+25=12
4x+26=12
= >4x=6/13
= >x=6,5
Ta có:
\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=\left(y+z-2x\right)^2+\left(z+x-2y\right)^2+\left(x+y-2z\right)^2\)
\(\Rightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx=6x^2+6y^2+6z^2-6xy-6yz-6zx\)
\(\Rightarrow4x^2+4y^2+4z^2-4xy-4yz-4zx=0\)
\(\Rightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx=0\)
\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-z\right)^2=0\\\left(z-x\right)^2=0\end{cases}}\Rightarrow x=y=z\)