K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(a^4+6a^3+11a^2+6a\)

\(=a\left(a^3+6a^2+11a+6\right)\)

\(=a\left(a^3+a^2+5a^2+5a+6a+6\right)\)

\(=a\left(a+1\right)\left(a^2+5a+6\right)\)

\(=a\left(a+1\right)\left(a+2\right)\left(a+3\right)\)

Vì a;a+1;a+2;a+3 là bốn số liên tiếp

nên \(a\left(a+1\right)\left(a+2\right)\left(a+3\right)⋮4!\)

hay \(a\left(a+1\right)\left(a+2\right)\left(a+3\right)⋮24\)

b: \(a^5-5a^3+4a\)

\(=a\left(a^4-5a^2+4\right)\)

\(=a\left(a^2-4\right)\left(a^2-1\right)\)

\(=a\left(a-2\right)\left(a+2\right)\left(a-1\right)\left(a+1\right)\)

Vì a;a-2;a+2;a-1;a+1 là 5 số liên tiếp

nên \(a\left(a-2\right)\left(a+2\right)\left(a-1\right)\left(a+1\right)⋮5!\)

hay \(a\left(a-2\right)\left(a+2\right)\left(a-1\right)\left(a+1\right)⋮120\)

4 tháng 11 2017

\(\text{a) }\left(\dfrac{1}{2}a^2x^4+\dfrac{4}{3}\:ax^3-\dfrac{2}{3}ax^2\right):\left(-\dfrac{2}{3}\:ax^2\right)\\ =-3ax^2-2x+1\)

\(\text{b) }4\left(\dfrac{3}{4}x-1\right)+\left(12x^2-3x\right):\left(-3x\right)-\left(2x+1\right)\\ =3x-4-4x+1-2x-1\\ =-3x-4\)

4 tháng 11 2017

kết quả cuối cùng là: a. -\(\dfrac{3}{4}ax^2-2x+1\)

b. \(\)-\(3x-4\)

16 tháng 10 2017

a) Ta có: 102 đồng dư với 1 (mod 99)

=> (102)1005 đồng dư với 11005 (mod 99)

=> 102010 - 1 đồng dư với 1 - 1 (mod 99)

=> 102010 - 1 đồng dư với 0 (mod 99)

=> 102010 - 1 \(⋮\) 99

b) Ta có: 33 đồng dư với 1 (mod 13)

=> (33)643 đồng dư với 1643 (mod 13)

=> 31929 đồng dư với 1 (mod 13)

=> 31930 đồng dư với 3 (mod 13)

Lại có: 24 đồng dư với 3 (mod 13)

=> (24)3 đồng dư với 33 (mod 13)

mà 33 đồng dư với 1 (mod 13)

=> 212 đồng dư với 1 (mod 13)

=> (212)160 đồng dư với 1160 (mod 13)

=> 21920 đồng dư với 1 (mod 13)

=> 21930 đồng dư với 210 (mod 13)

mà 210 đồng dư với 10 (mod 13)

=> 21930 đồng dư với 10 (mod 13)

Như vậy: 31930 + 21930 đồng dư với 3 + 10 (mod 13)

=> 31930 + 21930 đồng dư với 13 đồng dư với 0 (mod 13)

=> 31930 + 21930 \(⋮\) 13

c) Ta có: 210 + 1 = 1025 = 25.41

=> (210 + 1)2010 = (25.41)2010 = 252010.412010 \(⋮\) 252010

16 tháng 9 2017

a,(5x-2y)(x2-xy+1)=5x3-5x2+5x-2yx2+2xy2-2y

=5x3-7x2y+2xy2+5x-2y

b,(x-2)(x+2)(\(\dfrac{1}{2}\) x-5)=x2-4.\(\left(\dfrac{1}{2}x-5\right)\)

=\(\dfrac{1}{2}x^3-5x^2-2x+20\)

16 tháng 9 2017

c,\(\left(x^2-2x+3\right)\left(\dfrac{1}{2}x-5\right)\)

=\(\dfrac{1}{2}x^3-5x^2-1x^2+10x+\dfrac{3}{2}x-15\)

=\(\dfrac{1}{2}x^3-6x^2+\dfrac{23}{2}x-15\)

d,\(\left(x^2-5\right)\left(x+3\right)+\left(x+4\right)\left(x-x^2\right)\)

=\(x^3+3x^2-5x-15+x^2-x^3+4x-4x^2\)

=\(-5x+4x-15\)

=\(-x-15\)

Chúc bạn học tốt(mỏi tay quá)

a: \(=x^2+4x+3+11\)

\(=x^2+4x+14\)

\(=x^2+4x+4+10=\left(x+2\right)^2+10>=10\)

Dấu '=' xảy ra khi x=-2

b: \(-4x^2+4x+5\)

\(=-\left(4x^2-4x-5\right)\)

\(=-\left(4x^2-4x+1-6\right)\)

\(=-\left(2x-1\right)^2+6< =6\)

Dấu '=' xảy ra khi x=1/2

c: \(-x^2+6x-4\)

\(=-\left(x^2-6x+4\right)\)

\(=-\left(x^2-6x+9-5\right)\)

\(=-\left(x-3\right)^2+5< =5\)

Dấu '=' xảy ra khi x=3

11 tháng 2 2017

bài 1

đặt a = n5 - n = n (n4 - 1) = n (n - 1) (n + 1) (n2 + 1)

n(n + 1) luôn chia hết cho 2 => a luôn chia hết cho 2

ta cần cm a chia hết cho 5 => có 2 trường hợp

th1: n chia hết cho 5 => a chia hết cho 5

th2: n ko chia hết cho 5 => n = 5k + b (với b = 1 ; 2 ; 3 ; 4)

với b = 1 => n - 1 = 5k

với b = 2 => n2 + 1 = (5k+2)2 + 1 = 25k2 + 20k + 5

=> a chia hết cho 5

với b=3 => n2 + 1 = (5k+3)2 +1 = 25k2 + 30k + 10

=> a chia hết cho 5

với b = 4 => n + 1 = 5k + 5

=> a chia hết cho 5

từ các th trên => a luôn chia hết cho 5

2 và 5 nguyên tố cùng nhau => a chia hết cho 00 => a tận cùng là 0

=> đpcm

11 tháng 2 2017

bài 3

A = x4 - 2x3 + 3x2 - 4x + 2015

= (x2)2 - 2x2x + x2 + 2x2 - 4x + 2 + 2013

= (x2 - x)2 + 2(x - 1)2 +2013

có (x2 - x)2 và 2(x - 1)2 luôn lớn hơn hoặc = 0

=> A luôn lớn hơn hoặc = 2013

=> A min = 2013 tại (x2 - x)2 = 2(x - 1)2 = 0 <=> x = 1

23 tháng 10 2017

bài 4

a, x4+4y4

=x4+2.x2.2y2+4y4-2x2.2y2

=(x2+2y2)2-4x2y2

(HĐT số 1)

=(x2+2y2-2xy)(x2+2y2+2xy)

(HĐT số 3)

b, x(x+1)(x+2)(x+3)+1

=(x2+3x)(x2+3x+2)+1 (1)

Đặt x2+3x+1=a

( vì 1 là trung bình cộng của 2 và 0)

(1) = (a-1)(a+1)+1

=a2-1+1 =a2

(HĐT số 3)

=> (1) = (x2+3x+1)2

12 tháng 3 2017

kt 1 tiết thì ko có mấy cái đây đâu bạn

12 tháng 3 2017

kt hsg mà bn

Bài 1: 

a: \(3x\left(2x-1\right)^2-x\left(2x-1\right)=0\)

\(\Leftrightarrow x\left(2x-1\right)\left(6x-3-1\right)=0\)

=>x(2x-1)(6x-4)=0

hay \(x\in\left\{0;\dfrac{1}{2};\dfrac{2}{3}\right\}\)

b: \(\dfrac{1}{2}\left(x+1\right)^2-2\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(\dfrac{1}{2}x+\dfrac{1}{2}-2\right)=0\)

=>(x+1)(1/2x-3/2)=0

=>x=-1 hoặc x=3

c: \(\left(2x+1\right)^2-2x-1=0\)

=>(2x+1)(2x+1-1)=0

=>2x(2x+1)=0

hay \(x\in\left\{0;-\dfrac{1}{2}\right\}\)