\(\frac{a}{b}=\frac{c}{d}\)nếu biết

\(\frac{a+...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2017

Ta có : \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

\(\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

=> \(\frac{a}{c}=\frac{b}{d}\)

=> \(\frac{a}{b}=\frac{c}{d}\) nếu khố hiểu thì bạn chứng mình kiểu này : 
Ta có : \(\frac{a}{b}=\frac{c}{d}\)

=> \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\) 

Mặt khác \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)

=> \(\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

Vậy \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

a)  \(\frac{a}{a+b}=\frac{c}{c+d}\)=> a . ( c + d )  = c . ( a + b )

=> ac + ad = ac + cb

=> ad = bc

=> \(\frac{a}{b}=\frac{c}{d}\)

4 tháng 8 2017

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\)( 1 )

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a-c}{b-d}\)( 2 )

từ ( 1 ) và ( 2 ) \(\Rightarrow\)\(\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}\)

4 tháng 8 2017

Chứng minh \(\dfrac{a}{b}=\dfrac{c}{d}\) mà bạn

30 tháng 9 2017

Bài 1

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Rightarrow a=bk;c=dk\)

Ta có:

\(\dfrac{5a+3b}{5a-3b}=\dfrac{5bk+3b}{5bk-3b}=\dfrac{b\left(5k+3\right)}{b\left(5k-3\right)}=\dfrac{5k+3}{5k-3}\left(1\right)\)

\(\dfrac{5c+3d}{5c-3d}=\dfrac{5dk+3d}{5dk-3d}=\dfrac{d\left(5k+3\right)}{d\left(5k-3\right)}=\dfrac{5k+3}{5k-3}\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\) suy ra \(\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\left(đpcm\right)\)

Vậy .....

Bài 2

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\)

\(\Leftrightarrow\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\left(\dfrac{a+b+c}{b+c+d}\right)^3\)

\(\Leftrightarrow\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\left(đpcm\right)\)

Vậy .....

Chúc bạn học tốt!

3 tháng 2 2017

Với \(a,b,c,d\ne0\) ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}+1=\frac{c}{d}+1\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}\)

\(\Rightarrow\frac{a+b}{c+d}=\frac{b}{d}\left(1\right)\)

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a-b}{b}=\frac{c-d}{d}\Rightarrow\frac{a-b}{c-d}=\frac{b}{d}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\left(đpcm\right)\)

9 tháng 10 2019

a) Ta có: \(\frac{a}{b}=\frac{c}{d}.\)

\(\Rightarrow\frac{a}{b}-1=\frac{c}{d}-1\)

\(\Rightarrow\frac{a}{b}-\frac{b}{b}=\frac{c}{d}-\frac{d}{d}.\)

\(\Rightarrow\frac{a-b}{b}=\frac{c-d}{d}\left(đpcm1\right).\)

b) Ta có: \(\frac{a}{b}=\frac{c}{d}.\)

\(\Rightarrow\frac{a}{b}+1=\frac{c}{d}+1\)

\(\Rightarrow\frac{a}{b}+\frac{b}{b}=\frac{c}{d}+\frac{d}{d}.\)

\(\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}\left(đpcm2\right).\)

c) Ta có: \(\frac{a}{b}=\frac{c}{d}.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{a}{b}=\frac{c}{d}=\frac{a-c}{b-d}\) (1)

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\) (2)

Từ (1) và (2) \(\Rightarrow\frac{a-c}{b-d}=\frac{a+c}{b+d}\left(đpcm3\right).\)

Chúc bạn học tốt!

9 tháng 10 2019

a) đặt a/b=c/d =k

suy ra a=kb , c=kd

biến đổi vt ta đc :

a-b/b=kb-b/b=b(k-1)/b = k-1 (1)

biến đổi vp ta đc:

c-d/d=kd-d/d+d(k-1)/d = k-1 (2)

từ (1) và (2) suy ra a-b/b=c-d/d

1 tháng 7 2016

Vì  \(\frac{a}{b}\)  < \(\frac{c}{d}\)  nên ad < bc         (1)

Xét tích a(b + d) = ab + ad          (2)

             b ( a + c ) = ba + bc        (3)

Từ (1);(2);(3) suy ra a(b+d) < b(a+c)   do đó  \(\frac{a}{b}\)  < \(\frac{a+c}{b+d}\)        (4)

Tương tự ta có \(\frac{a+c}{b+d}\)    <  \(\frac{c}{d}\)   (5)

kết hợp (4) ; (5) ta được \(\frac{a}{b}\)  < \(\frac{a+c}{b+d}\)  < \(\frac{c}{d}\)  

28 tháng 10 2016

\(\frac{a}{b}< \frac{c}{d}=>ad< bc\)

=>ad+ab<bc+ab

=>a(b+d)<b(a+c)

=>\(\frac{a}{b}< \frac{a+c}{b+d}\) (1)

\(\frac{a}{b}< \frac{c}{d}=>ad< bc\)

=>ad+cd<bc+cd

=>a(a+c)<c(b+d)

=>\(\frac{a+c}{b+d}< \frac{c}{d}\) (2)

từ (1)(2)=>\(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

chúc bạn học tốtok